skip to main content


Search for: All records

Creators/Authors contains: "Noble, Kristen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bonomo, Robert A. (Ed.)
    ABSTRACT Streptococcus agalactiae , also known as group B Streptococcus (GBS), is a Gram-positive encapsulated bacterium that colonizes the gastrointestinal tract of 30 to 50% of humans. GBS causes invasive infection during pregnancy that can lead to chorioamnionitis, funisitis, preterm prelabor rupture of membranes (PPROM), preterm birth, neonatal sepsis, and maternal and fetal demise. Upon infecting the host, GBS encounters sentinel innate immune cells, such as macrophages, within reproductive tissues. Once phagocytosed by macrophages, GBS upregulates the expression of the gene npx , which encodes an NADH peroxidase. GBS mutants with an npx deletion (Δ npx ) are exquisitely sensitive to reactive oxygen stress. Furthermore, we have shown that npx is required for GBS survival in both THP-1 and placental macrophages. In an in vivo murine model of ascending GBS vaginal infection during pregnancy, npx is required for invading reproductive tissues and is critical for inducing disease progression, including PPROM and preterm birth. Reproductive tissue cytokine production was also significantly diminished in Δ npx mutant-infected animals compared to that in animals infected with wild-type (WT) GBS. Complementation in trans reversed this phenotype, indicating that npx is critical for GBS survival and the initiation of proinflammatory signaling in the gravid host. IMPORTANCE This study sheds new light on the way that group B Streptococcus (GBS) defends itself against oxidative stress in the infected host. The enzyme encoded by the GBS gene npx is an NADH peroxidase that, our study reveals, provides defense against macrophage-derived reactive oxygen stress and facilitates infections of the uterus during pregnancy. This enzyme could represent a tractable target for future treatment strategies against invasive GBS infections. 
    more » « less
  2. Abstract Perinatal infection with Streptococcus agalactiae , or Group B Streptococcus (GBS), is associated with preterm birth, neonatal sepsis, and stillbirth. Here, we study the interactions of GBS with macrophages, essential sentinel immune cells that defend the gravid reproductive tract. Transcriptional analyses of GBS-macrophage co-cultures reveal enhanced expression of a gene encoding a putative metal resistance determinant, cadD . Deletion of cadD reduces GBS survival in macrophages, metal efflux, and resistance to metal toxicity. In a mouse model of ascending infection during pregnancy, the ΔcadD strain displays attenuated bacterial burden, inflammation, and cytokine production in gestational tissues. Furthermore, depletion of host macrophages alters cytokine expression and decreases GBS invasion in a cadD -dependent fashion. Our results indicate that GBS cadD plays an important role in metal detoxification, which promotes immune evasion and bacterial proliferation in the pregnant host. 
    more » « less
  3. null (Ed.)
  4. This work demonstrates the successful blocky bromination of syndiotactic polystyrene (sPS- co -sPS-Br) copolymers containing 6–30 mol% p -bromostyrene units, using a post-polymerization functionalization method conducted in the heterogeneous gel state. For comparison, a matched set of randomly brominated sPS- co -sPS-Br copolymers was prepared using homogeneous (solution-state) reaction conditions. The degree of bromination and copolymer microstructure were evaluated using 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopy. The NMR spectra of gel-state (Blocky) and solution-state (Random) copolymers exhibit strikingly different resonance frequencies and peak intensities above 6 mol% Br and provide direct evidence that functionalization in the gel state produces copolymers with non-random “blocky” microstructures. Quenched films of the Blocky copolymers, analyzed using ultra-small-angle X-ray scattering (USAXS) and small-angle X-ray scattering (SAXS), show micro-phase separated morphologies, which further supports that the Blocky copolymers contain distinct segments of pure sPS and segments of randomly brominated sPS unlike their completely Random analogs. Crystallization behavior of the copolymers, examined using differential scanning calorimetry (DSC), demonstrates that the Blocky copolymers are more crystallizable and crystallize faster at lower supercooling compared to their Random analogs. Computer simulations of the blocky copolymers were developed based on the semicrystalline morphology of a 10 w/v% sPS/CCl 4 gel, to rationalize the effect of heterogeneous functionalization on copolymer microstructure and crystallization behavior. The simulations were found to agree with the microstructural analysis based on the NMR results and confirm that restricting the accessibility of the brominating reagent to monomers well removed from the crystalline fraction of the gel network produces copolymers with a greater prevalence of long, uninterrupted sPS homopolymer sequences. Thus, the blocky microstructure is advantageous for preserving desired crystallizability of the resulting blocky copolymers. 
    more » « less
  5. Abstract

    Group BStreptococcus(GBS) is an encapsulated Gram‐positive human pathogen that causes invasive infections in pregnant hosts and neonates, as well as immunocompromised individuals. Colonization of the human host requires the ability to adhere to mucosal surfaces and circumnavigate the nutritional challenges and antimicrobial defenses associated with the innate immune response. Biofilm formation is a critical process to facilitate GBS survival and establishment of a replicative niche in the vertebrate host. Previous work has shown that the host responds to GBS infection by producing the innate antimicrobial glycoprotein lactoferrin, which has been implicated in repressing bacterial growth and biofilm formation. Additionally, lactoferrin is highly abundant in human breast milk and could serve a protective role against invasive microbial pathogens. This study demonstrates that human breast milk lactoferrin has antimicrobial and anti‐biofilm activity against GBS and inhibits its adherence to human gestational membranes. Together, these results indicate that human milk lactoferrin could be used as a prebiotic chemotherapeutic strategy to limit the impact of bacterial adherence and biofilm formation on GBS‐associated disease outcomes.

     
    more » « less