skip to main content


Search for: All records

Creators/Authors contains: "Ntampaka, Michelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $(25\, h^{-1}\, {\rm Mpc})^3$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $h\, \mathrm{Mpc}^{-1}$.

     
    more » « less
  2. ABSTRACT

    We evaluate the effectiveness of deep learning (DL) models for reconstructing the masses of galaxy clusters using X-ray photometry data from next-generation surveys. We establish these constraints using a catalogue of realistic mock eROSITA X-ray observations which use hydrodynamical simulations to model realistic cluster morphology, background emission, telescope response, and active galactic nucleus (AGN) sources. Using bolometric X-ray photon maps as input, DL models achieve a predictive mass scatter of $\sigma _{\ln M_\mathrm{500c}} = 17.8~{{\ \rm per\ cent}}$, a factor of two improvements on scalar observables such as richness Ngal, 1D velocity dispersion σv,1D, and photon count Nphot as well as a 32  per cent improvement upon idealized, volume-integrated measurements of the bolometric X-ray luminosity LX. We then show that extending this model to handle multichannel X-ray photon maps, separated in low, medium, and high energy bands, further reduces the mass scatter to 16.2  per cent. We also tested a multimodal DL model incorporating both dynamical and X-ray cluster probes and achieved marginal gains at a mass scatter of 15.9  per cent. Finally, we conduct a quantitative interpretability study of our DL models and find that they greatly down-weight the importance of pixels in the centres of clusters and at the location of AGN sources, validating previous claims of DL modelling improvements and suggesting practical and theoretical benefits for using DL in X-ray mass inference.

     
    more » « less
  3. ABSTRACT

    We develop a machine-learning (ML) algorithm that generates high-resolution thermal Sunyaev–Zeldovich (SZ) maps of novel galaxy clusters given only halo mass and mass accretion rate (MAR). The algorithm uses a conditional variational autoencoder (CVAE) in the form of a convolutional neural network and is trained with SZ maps generated from the IllustrisTNG simulation. Our method can reproduce many of the details of galaxy clusters that analytical models usually lack, such as internal structure and aspherical distribution of gas created by mergers, while achieving the same computational feasibility, allowing us to generate mock SZ maps for over 105 clusters in 30 s on a laptop. We show that the model is capable of generating novel clusters (i.e. not found in the training set) and that the model accurately reproduces the effects of mass and MAR on the SZ images, such as scatter, asymmetry, and concentration, in addition to modelling merging sub-clusters. This work demonstrates the viability of ML-based methods for producing the number of realistic, high-resolution maps of galaxy clusters necessary to achieve statistical constraints from future SZ surveys.

     
    more » « less
  4. Abstract

    We present the Local Volume Complete Cluster Survey (LoVoCCS; we pronounce it as “low-vox” or “law-vox,” with stress on the second syllable), an NSF’s National Optical-Infrared Astronomy Research Laboratory survey program that uses the Dark Energy Camera to map the dark matter distribution and galaxy population in 107 nearby (0.03 <z< 0.12) X-ray luminous ([0.1–2.4 keV]LX500> 1044erg s−1) galaxy clusters that are not obscured by the Milky Way. The survey will reach Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1–2 depth (for galaxiesr= 24.5,i= 24.0, signal-to-noise ratio (S/N) > 20;u= 24.7,g= 25.3,z= 23.8, S/N > 10) and conclude in ∼2023 (coincident with the beginning of LSST science operations), and will serve as a zeroth-year template for LSST transient studies. We process the data using the LSST Science Pipelines that include state-of-the-art algorithms and analyze the results using our own pipelines, and therefore the catalogs and analysis tools will be compatible with the LSST. We demonstrate the use and performance of our pipeline using three X-ray luminous and observation-time complete LoVoCCS clusters: A3911, A3921, and A85. A3911 and A3921 have not been well studied previously by weak lensing, and we obtain similar lensing analysis results for A85 to previous studies. (We mainly use A3911 to show our pipeline and give more examples in the Appendix.)

     
    more » « less
  5. null (Ed.)