skip to main content


Search for: All records

Creators/Authors contains: "Ochoa, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Theory predicts that threatened species living in small populations will experience high levels of inbreeding that will increase their genetic load, but recent work suggests that the impact of load may be minimized by purging resulting from long‐term population bottlenecks. Empirical studies that examine this idea using genome‐wide estimates of inbreeding and genetic load in threatened species are limited. Here we use individual genome resequencing data to compare levels of inbreeding, levels of genetic load (estimated as mutation load) and population history in threatened Eastern massasauga rattlesnakes (Sistrurus catenatus), which exist in small isolated populations, and closely related yet outbred Western massasauga rattlesnakes (Sistrurus tergeminus). In terms of inbreeding,Scatenatusgenomes had a greater number of runs of homozygosity of varying sizes, indicating sustained inbreeding through repeated bottlenecks when compared toStergeminus. At the species level, outbredStergeminushad higher genome‐wide levels of mutation load in the form of greater numbers of derived deleterious mutations compared toScatenatus, presumably due to long‐term purging of deleterious mutations inScatenatus. In contrast, mutations that escaped species‐level drift effects withinScatenatuspopulations were in general more frequent and more often found in homozygous genotypes than inStergeminus, suggesting a reduced efficiency of purifying selection in smallerScatenatuspopulations for most mutations. Our results support an emerging idea that the historical demography of a threatened species has a significant impact on the type of genetic load present, which impacts implementation of conservation actions such as genetic rescue.

     
    more » « less
  2. Abstract

    Understanding how interspecific interactions mould the molecular basis of adaptations in coevolving species is a long‐sought goal of evolutionary biology. Venom in predators and venom resistance proteins in prey are coevolving molecular phenotypes, and while venoms are highly complex mixtures it is unclear if prey respond with equally complex resistance traits. Here, we use a novel molecular methodology based on protein affinity columns to capture and identify candidate blood serum resistance proteins (“venom interactive proteins” [VIPs]) in California Ground Squirrels (Otospermophilus beecheyi) that interact with venom proteins from their main predator, Northern Pacific Rattlesnakes (Crotalus o. oreganus). This assay showed that serum‐based resistance is both population‐ and species‐specific, with serum proteins from ground squirrels showing higher binding affinities for venom proteins of local snakes compared to allopatric individuals. Venom protein specificity assays identified numerous and diverse candidate prey resistance VIPs but also potential targets of venom in prey tissues. Many specific VIPs bind to multiple snake venom proteins and, conversely, single venom proteins bind multiple VIPs, demonstrating that a portion of the squirrel blood serum “resistome” involves broad‐based inhibition of nonself proteins and suggests that resistance involves a toxin scavenging mechanism. Analyses of rates of evolution of VIP protein homologues in related mammals show that most of these proteins evolve under purifying selection possibly due to molecular constraints that limit the evolutionary responses of prey to rapidly evolving snake venom proteins. Our method represents a general approach to identify specific proteins involved in co‐evolutionary interactions between species at the molecular level.

     
    more » « less
  3. Abstract

    An important goal of conservation genetics is to determine if the viability of small populations is reduced by a loss of adaptive variation due to genetic drift. Here, we assessed the impact of drift and selection on direct measures of adaptive variation (toxin loci encoding venom proteins) in the eastern massasauga rattlesnake (Sistrurus catenatus), a threatened reptile that exists in small isolated populations. We estimated levels of individual polymorphism in 46 toxin loci and 1,467 control loci across 12 populations of this species, and compared the results with patterns of selection on the same loci following speciation ofS. catenatusand its closest relative, the western massasauga (S. tergeminus). Multiple lines of evidence suggest that both drift and selection have had observable impacts on standing adaptive variation. In support of drift effects, we found little evidence for selection on toxin variation within populations and a significant positive relationship between current levels of adaptive variation and long‐ and short‐term estimates of effective population size. However, we also observed levels of directional selection on toxin loci among populations that are broadly similar to patterns predicted from interspecific selection analyses that pre‐date the effects of recent drift, and that functional variation in these loci persists despite small short‐term effective sizes. This suggests that much of the adaptive variation present in populations may represent an example of “drift debt,” a nonequilibrium state where present‐day levels of variation overestimate the amount of functional genetic diversity present in future populations.

     
    more » « less