skip to main content


Search for: All records

Creators/Authors contains: "Ochoa-Ricoux, J. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Baryon number conservation is not guaranteed by any fundamental symmetry within the standard model, and therefore has been a subject of experimental and theoretical scrutiny for decades. So far, no evidence for baryon number violation has been observed. Large underground detectors have long been used for both neutrino detection and searches for baryon number violating processes. The next generation of large neutrino detectors will seek to improve upon the limits set by past and current experiments and will cover a range of lifetimes predicted by several Grand Unified Theories. In this White Paper, we summarize theoretical motivations and experimental aspects of searches for baryon number violation in neutrino experiments.

     
    more » « less
  2. Abstract The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era. The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment, in combination with the fission rates of fissile isotopes in the reactor, is used to extract the positron energy spectra resulting from the fission of specific isotopes. This information can be used to produce a precise, data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay. The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method. Consistent results are obtained with other unfolding methods. A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated. Given the reactor fission fractions, the technique can predict the energy spectrum to a 2% precision. In addition, we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method. 
    more » « less
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. A bstract A search for Higgs boson pair production in events with two b -jets and two τ -leptons is presented, using a proton–proton collision dataset with an integrated luminosity of 139 fb − 1 collected at $$ \sqrt{s} $$ s = 13 TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one τ -lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of 3 . 1 σ (2 . 0 σ ). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. A<sc>bstract</sc>

    This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb1of proton–proton collisions at$$ \sqrt{s} $$s= 13 TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, dE/dx. Trajectories reconstructed solely by the inner tracking system and a dE/dxmeasurement in the pixel detector layers provide sensitivity to particles with lifetimes down to$$ \mathcal{O} $$O(1) ns with a mass, measured using the Bethe–Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production ofR-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  7. A bstract A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron–muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb − 1 at $$ \sqrt{s} $$ s = 7 TeV and about 20 fb − 1 at $$ \sqrt{s} $$ s = 8 TeV for each experiment. The combined cross-sections are determined to be 178 . 5 ± 4 . 7 pb at $$ \sqrt{s} $$ s = 7 TeV and $$ {243.3}_{-5.9}^{+6.0} $$ 243.3 − 5.9 + 6.0 pb at $$ \sqrt{s} $$ s = 8 TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be R 8 / 7 = 1 . 363 ± 0 . 032. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $$ {m}_t^{\textrm{pole}}={173.4}_{-2.0}^{+1.8} $$ m t pole = 173.4 − 2.0 + 1.8 GeV and $$ {\alpha}_{\textrm{s}}\left({m}_Z\right)={0.1170}_{-0.0018}^{+0.0021} $$ α s m Z = 0.1170 − 0.0018 + 0.0021 . 
    more » « less
    Free, publicly-accessible full text available July 1, 2024