skip to main content


Search for: All records

Creators/Authors contains: "Oliver, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. David A. Gray (Ed.)

    The ability to respond to environmental changes plays a crucial role for coping with environmental stressors related to climate change. Substantial changes in environmental conditions can overcome developmental homeostasis, exposing cryptic genetic variation. The katydidNeoconocephalus triopsis a tropical species that extended its range to the more seasonal environment of North America where it has two reproductive generations per year. The harsher winter conditions required adults to diapause which resulted in substantially different mating calls of the diapausing winter animals compared to the non-overwintering summer animals in northern Florida. The summer call corresponds to that of tropical populations, whereas the winter call represents the alternative call phenotype. We quantified call plasticity in a tropical (Puerto Rico) and a temperate population ofN. triops(Florida) that differ in experiencing winter conditions in their geographic regions. We hypothesized that the plastic call traits, i.e., double-pulse rate and call structure, are regulated independently. Further, we hypothesized that phenotypic plasticity of double-pulse rate results in quantitative changes, whereas that of call structure in qualitative changes. We varied the photoperiod and duration of diapause during male juvenile and adult development during rearing and analyzed the double-pulse rate and call structure of the animals. Double-pulse rate changed in a quantitative fashion in both populations and significant changes appeared at different developmental points, i.e., the double-pulse rate slowed down during juvenile development in Florida, whereas during adult diapause in Puerto Rico. In the Florida population, both the number of males producing and the proportion of total call time covered by the alternative call structure (= continuous calls) increased with duration spent in diapause. In the Puerto Rico population, expression of the alternative call structure was extremely rare. Our results suggest that the expression of both pulse rate and call structure was quantitative and not categorical. Our systematic variation of environmental variables demonstrated a wide range of phenotypic variation that can be induced during development. Our study highlights the evolutionary potential of hidden genetic variation and phenotypic plasticity when confronted with rapidly changing environments and their potential role in providing variation necessary for communication systems to evolve.

     
    more » « less
    Free, publicly-accessible full text available October 24, 2024
  2. NA (Ed.)

    Antagonistic species relationships such as parasitoid/host interactions lead to evolutionary arms races between species. Many parasitoids use more than one host species, requiring the parasitoid to adapt to multiple hosts, sometimes being the leader or the follower in the evolutionary back-and-forth between species. Thus, multi-species interactions are dynamic and show temporary evolutionary outcomes at a given point in time. We investigated the interactions of the multivoltine parasitoid fly Ormia lineifrons that uses different katydid hosts for each of its fly generations sequentially over time. We hypothesized that this fly is adapted to utilizing all hosts equally well for the population to persist. We quantified and compared the fly’s development in each of the four Neoconocephalus hosts. Cumulative parasitism rates ranged between ~14% and 73%, but parasitoid load and development time did not differ across host species. Yet, pupal size was lowest for flies using N. velox as a host compared to N. triops and other host species. Successful development from pupa to adult fly differed across host species, with flies emerging from N. triops displaying a significantly lower development success rate than those emerging from N. velox and the other two hosts. Interestingly, N. triops and N. velox did not differ in size and were smaller than N. robustus and N. nebrascensis hosts. Thus, O. lineifrons utilized all hosts but displayed especially low ability to develop in N. triops, potentially due to differences in the nutritional status of the host. In the multi-species interactions between the fly and its hosts, the poor use of N. triops may currently affect the fly’s evolution the most. Similarities and differences across host utilization and their evolutionary background are discussed.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Abstract Antarctica’s continental margins pose an unknown submarine landslide-generated tsunami risk to Southern Hemisphere populations and infrastructure. Understanding the factors driving slope failure is essential to assessing future geohazards. Here, we present a multidisciplinary study of a major submarine landslide complex along the eastern Ross Sea continental slope (Antarctica) that identifies preconditioning factors and failure mechanisms. Weak layers, identified beneath three submarine landslides, consist of distinct packages of interbedded Miocene- to Pliocene-age diatom oozes and glaciomarine diamicts. The observed lithological differences, which arise from glacial to interglacial variations in biological productivity, ice proximity, and ocean circulation, caused changes in sediment deposition that inherently preconditioned slope failure. These recurrent Antarctic submarine landslides were likely triggered by seismicity associated with glacioisostatic readjustment, leading to failure within the preconditioned weak layers. Ongoing climate warming and ice retreat may increase regional glacioisostatic seismicity, triggering Antarctic submarine landslides. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Image formation by Fresnel diffraction utilizes both absorption and phase-contrast to measure electron density profiles. The low spatial and spectral coherence requirements allow the technique to be performed with a laser-produced x-ray source coupled with a narrow slit. This makes it an excellent candidate for probing interfaces between materials at extreme conditions, which can only be generated at large-scale laser or pulsed power facilities. Here, we present the results from a proof-of-principle experiment demonstrating an effective ∼2 μm laser-generated source at the OMEGA Laser Facility. This was achieved using slits of 1 × 30  μm 2 and 2 × 40  μm 2 geometry, which were milled into 30 μm thick Ta plates. Combining these slits with a vanadium He-like 5.2 keV source created a 1D imaging system capable of micrometer-scale resolution. The principal obstacles to achieving an effective 1 μm source are the slit tilt and taper—where the use of a tapered slit is necessary to increase the alignment tolerance. We demonstrate an effective source size by imaging a 2 ± 0.2 μm radius tungsten wire. 
    more » « less
  5. Abstract

    High‐pressure rocks from the island of Ios in the Greek Cyclades were examined to resolve the P–T conditions reached during subduction of the two distinct lithotectonic units that are separated by the South Cycladic Shear Zone (SCSZ)—the footwall complex composed of Hercynian basement gneisses, schists and amphibolites, and the hangingwall complex composed of blueschists and eclogites. A combination of elastic tensor quartz inclusion in garnet (QuiG) barometry and Zr‐in‐rutile (ZiR) trace element thermometry was used to constrain minimum garnet growth conditions. Garnet from the hangingwall (blueschist) unit record formation pressures that range from 1.5 to 1.9 GPa and garnet from the footwall basement complex record garnet formation pressures of 1.65–2.05 GPa. ZiR thermometry on rutile inclusions within garnet establishes the minimum temperature for garnet formation to be ~480–500°C. That is, there is no evidence in the QuiG and ZiR results that the rocks of the blueschist hangingwall and basement experienced different metamorphic histories during subduction. This is the first reported observation of blueschist facies metamorphism in the Hercynian basement complex. A model is proposed in which initial subduction occurred along a relatively shallow P–T trajectory of ~11°C/km and then transitioned to a steeper, nearly isothermal trajectory at a depth of ~45 km reaching similar peak metamorphic conditions of ~500–525°C at 2.0 GPa for all samples. Such a change in the subduction path could be accomplished by either an increase in the rate of subduction or an increase in the angle of the subduction zone. The present juxtaposition of samples with contrasting mineral assemblages and garnet growth histories is interpreted to have arisen from differences in bulk compositions and variations in the preservation of high‐pressure prograde mineral assemblages during exhumation. The existence of similar P–T conditions and prograde paths in the two units does not require that the rocks were all metamorphosed at the same time and that the SCSZ experienced little movement. Rather, it is suggested that the two units experienced prograde and peak metamorphism at different times and were subsequently juxtaposed along the SCSZ.

     
    more » « less
  6. Twisted stalks are morphologically unique bacterial extracellular organo-metallic structures containing Fe(III) oxyhydroxides that are produced by microaerophilic Fe(II)-oxidizers belonging to the Betaproteobacteria and Zetaproteobacteria. Understanding the underlying genetic and physiological mechanisms of stalk formation is of great interest based on their potential as novel biogenic nanomaterials and their relevance as putative biomarkers for microbial Fe(II) oxidation on ancient Earth. Despite the recognition of these special biominerals for over 150 years, the genetic foundation for the stalk phenotype has remained unresolved. Here we present a candidate gene cluster for the biosynthesis and secretion of the stalk organic matrix that we identified with a trait-based analyses of a pan-genome comprising 16 Zetaproteobacteria isolate genomes. The “ s talk f ormation in Z etaproteobacteria” (sfz) cluster comprises six genes ( sfz1-sfz6 ), of which sfz1 and sfz2 were predicted with functions in exopolysaccharide synthesis, regulation, and export, sfz4 and sfz6 with functions in cell wall synthesis manipulation and carbohydrate hydrolysis, and sfz3 and sfz5 with unknown functions. The stalk-forming Betaproteobacteria Ferriphaselus R-1 and OYT-1, as well as dread-forming Zetaproteobacteria Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8 contain distant sfz gene homologs, whereas stalk-less Zetaproteobacteria and Betaproteobacteria lack the entire gene cluster. Our pan-genome analysis further revealed a significant enrichment of clusters of orthologous groups (COGs) across all Zetaproteobacteria isolate genomes that are associated with the regulation of a switch between sessile and motile growth controlled by the intracellular signaling molecule c-di-GMP. Potential interactions between stalk-former unique transcription factor genes, sfz genes, and c-di-GMP point toward a c-di-GMP regulated surface attachment function of stalks during sessile growth. 
    more » « less