skip to main content


Search for: All records

Creators/Authors contains: "Ono, Shuhei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The disappearance of mass-independent sulfur isotope fractionation (S-MIF) within the c. 2.3-billion-year-old (Ga) Rooihoogte Formation has been heralded as a chemostratigraphic marker of permanent atmospheric oxygenation. Reports of younger S-MIF, however, question this narrative, leaving significant uncertainties surrounding the timing, tempo, and trajectory of Earth’s oxygenation. Leveraging a new bulk quadruple S-isotope record, we return to the South African Transvaal Basin in search of support for supposed oscillations in atmospheric oxygen beyond 2.3 Ga. Here, as expected, within the Rooihoogte Formation, our data capture a collapse in Δ 3× S values and a shift from Archean-like Δ 36 S/Δ 33 S slopes to their mass-dependent counterparts. Importantly, the interrogation of a Δ 33 S-exotic grain reveals extreme spatial variability, whereby atypically large Δ 33 S values are separated from more typical Paleoproterozoic values by a subtle grain-housed siderophile-enriched band. This isotopic juxtaposition signals the coexistence of two sulfur pools that were able to escape diagenetic homogenization. These large Δ 33 S values require an active photochemical sulfur source, fingerprinting atmospheric S-MIF production after its documented cessation elsewhere at ∼2.4 Ga. By contrast, the Δ 33 S monotony observed in overlying Timeball Hill Formation, with muted Δ 33 S values (<0.3‰) and predominantly mass-dependent Δ 36 S/Δ 33 S systematics, remains in stark contrast to recent reports of pronounced S-MIF within proximal formational equivalents. If reflective of atmospheric processes, these observed kilometer-scale discrepancies disclose heterogenous S-MIF delivery to the Transvaal Basin and/or poorly resolved fleeting returns to S-MIF production. Rigorous bulk and grain-scale analytical campaigns remain paramount to refine our understanding of Earth’s oxygenation and substantiate claims of post-2.3 Ga oscillations in atmospheric oxygen. 
    more » « less
  2. null (Ed.)
  3. Abstract

    In hyperalkaline () fluids that have participated in low‐temperature (<150) serpentinization reactions, the dominant form of C is often methane (), but the origin of thisis uncertain. To assessorigin in serpentinite aquifers within the Samail Ophiolite, Oman, we determined fluid chemical compositions, analyzed taxonomic profiles of fluid‐hosted microbial communities, and measured isotopic compositions of hydrocarbon gases. We found that 16S rRNA gene sequences affiliated with methanogens were widespread in the aquifer. We measured clumped isotopologue (D and) relative abundances less than equilibrium, consistent with substantial microbialproduction. Furthermore, we observed an inverse relationship between dissolved inorganic C concentrations andacross fluids bearing microbiological evidence of methanogenic activity, suggesting that the apparent C isotope effect of microbial methanogenesis is modulated by C availability. An additional source ofis evidenced by the presence of‐bearing fluid inclusions in the Samail Ophiolite and our measurement of highvalues of ethane and propane, which are similar to those reported in studies of‐rich inclusions in rocks from the oceanic lithosphere. In addition, we observed 16S rRNA gene sequences affiliated with aerobic methanotrophs and, in lower abundance, anaerobic methanotrophs, indicating that microbial consumption ofin the ophiolite may further enrichin13C. We conclude that substantial microbialis produced under varying degrees of C limitation and mixes with abioticreleased from fluid inclusions. This study lends insight into the functioning of microbial ecosystems supported by water/rock reactions.

     
    more » « less