skip to main content


Search for: All records

Creators/Authors contains: "Ortiz, Luis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We examine the uneven social and spatial distributions of COVID-19 and their relationships with indicators of social vulnerability in the U.S. epicenter, New York City (NYC). As of July 17th, 2020, NYC, despite having only 2.5% of the U.S. population, has [Formula: see text]6% of all confirmed cases, and [Formula: see text]16% of all deaths, making it a key learning ground for the social dynamics of the disease. Our analysis focuses on the multiple potential social, economic, and demographic drivers of disproportionate impacts in COVID-19 cases and deaths, as well as population rates of testing. Findings show that immediate impacts of COVID-19 largely fall along lines of race and class. Indicators of poverty, race, disability, language isolation, rent burden, unemployment, lack of health insurance, and housing crowding all significantly drive spatial patterns in prevalence of COVID-19 testing, confirmed cases, death rates, and severity. Income in particular has a consistent negative relationship with rates of death and disease severity. The largest differences in social vulnerability indicators are also driven by populations of people of color, poverty, housing crowding, and rates of disability. Results highlight the need for targeted responses to address injustice of COVID-19 cases and deaths, importance of recovery strategies that account for differential vulnerability, and provide an analytical approach for advancing research to examine potential similar injustice of COVID-19 in other U.S. cities. Significance Statement Communities around the world have variable success in mitigating the social impacts of COVID-19, with many urban areas being hit particularly hard. Analysis of social vulnerability to COVID-19 in the NYC, the U.S. national epicenter, shows strongly disproportionate impacts of the pandemic on low income populations and communities of color. Results highlight the class and racial inequities of the coronavirus pandemic in NYC, and the need to unpack the drivers of social vulnerability. To that aim, we provide a replicable framework for examining patterns of uneven social vulnerability to COVID-19- using publicly available data which can be readily applied in other study regions, especially within the U.S.A. This study is important to inform public and policy debate over strategies for short- and long-term responses that address the injustice of disproportionate impacts of COVID-19. Although similar studies examining social vulnerability and equity dimensions of the COVID-19 outbreak in cities across the U.S. have been conducted (Cordes and Castro 2020, Kim and Bostwick 2002, Gaynor and Wilson 2020; Wang et al. 2020; Choi and Unwin 2020), this study provides a more comprehensive analysis in NYC that extends previous contributions to use the highest resolution spatial units for data aggregation (ZCTAs). We also include mortality and severity rates as key indicators and provide a replicable framework that draws from the Centers for Disease Control and Prevention’s Social Vulnerability indicators for communities in NYC. 
    more » « less
  2. Abstract Extreme heat events are becoming more frequent and intense. In cities, the urban heat island (UHI) can often intensify extreme heat exposure, presenting a public health challenge across vulnerable populations without access to adaptive measures. Here, we explore the impacts of increasing residential air-conditioning (AC) adoption as one such adaptive measure to extreme heat, with New York City (NYC) as a case study. This study uses AC adoption data from NYC Housing and Vacancy Surveys to study impacts to indoor heat exposure, energy demand, and UHI. The Weather Research and Forecasting (WRF) model, coupled with a multilayer building environment parameterization and building energy model (BEP–BEM), is used to perform this analysis. The BEP–BEM schemes are modified to account for partial AC use and used to analyze current and full AC adoption scenarios. A city-scale case study is performed over the summer months of June–August 2018, which includes three different extreme heat events. Simulation results show good agreement with surface weather stations. We show that increasing AC systems to 100% usage across NYC results in a peak energy demand increase of 20%, while increasing UHI on average by 0.42 °C. Results highlight potential trade-offs in extreme heat adaptation strategies for cities, which may be necessary in the context of increasing extreme heat events. 
    more » « less
  3. Abstract

    Droplet-based microfluidic devices hold immense potential in becoming inexpensive alternatives to existing screening platforms across life science applications, such as enzyme discovery and early cancer detection. However, the lack of a predictive understanding of droplet generation makes engineering a droplet-based platform an iterative and resource-intensive process. We present a web-based tool, DAFD, that predicts the performance and enables design automation of flow-focusing droplet generators. We capitalize on machine learning algorithms to predict the droplet diameter and rate with a mean absolute error of less than 10μm and 20 Hz. This tool delivers a user-specified performance within 4.2% and 11.5% of the desired diameter and rate. We demonstrate that DAFD can be extended by the community to support additional fluid combinations, without requiring extensive machine learning knowledge or large-scale data-sets. This tool will reduce the need for microfluidic expertise and design iterations and facilitate adoption of microfluidics in life sciences.

     
    more » « less
  4. Jaeger, Manfred ; Nielsen, Thomas Dyhre (Ed.)
    Almost all of the work in graphical models for game theory has mirrored previous work in probabilistic graphical models. Our work considers the opposite direction: Taking advantage of advances in equilibrium computation for probabilistic inference. In particular, we present formulations of inference problems in Markov random fields (MRFs) as computation of equilibria in a certain class of game-theoretic graphical models. While some previous work explores this direction, we still lack a more precise connection between variational probabilistic inference in MRFs and correlated equilibria. This paper sharpens the connection, which helps us exploit relatively more recent theoretical and empirical results from the literature on algorithmic and computational game theory on the tractable, polynomial-time computation of exact or approximate correlated equilibria in graphical games with arbitrary, loopy graph structure. Our work discusses how to design new algorithms with equally tractable guarantees for the computation of approximate variational inference in MRFs. In addition, inspired by a previously stated game-theoretic view of tree-reweighted message-passing techniques for belief inference as a zero-sum game, we propose a different, general-sum potential game to design approximate fictitious-play techniques. Empirical evaluations on synthetic experiments and on an application to soft de-noising on real-world image datasets illustrate the performance of our proposed approach and shed some light on the conditions under which the resulting belief inference algorithms may be most effective relative to standard state-of-the-art methods. 
    more » « less
  5. Abstract

    Heat waves impact a wide array of human activities, including health, cooling energy demand, and infrastructure. Cities amplify many of these impacts by concentrating large populations and critical infrastructure in relatively small areas. In addition, heat waves are expected to become longer, more intense, and more frequent in North America. Here, we evaluate combined climate and urban surface impacts on localized heat wave metrics throughout the 21st century across two emissions scenarios (RCP4.5 and RCP8.5) for New York City (NYC), which houses the largest urban population in the United States. We account for local biases due to urban surfaces via bias correcting with observed records and urbanized 1‐km resolution dynamical downscaling simulations across selected time periods (2045–2049 and 2095–2099). Analysis of statistically downscaled global model output shows underestimation of uncorrected summer daily maximum temperatures, leading to lower heat wave intensity and duration projections. High‐resolution dynamical downscaling simulations reveal strong dependency of changes in event duration and intensity on geographical location and urban density. Event intensity changes are expected to be highest closer to the coast, where afternoon sea‐breezes have traditionally mitigated summer high temperatures. Meanwhile, event duration anomaly is largest over Manhattan, where the urban canopy is denser and taller.

     
    more » « less