skip to main content


Search for: All records

Creators/Authors contains: "Pace, A. B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The current and next observation seasons will detect hundreds of gravitational waves (GWs) from compact binary systems coalescence at cosmological distances. When combined with independent electromagnetic measurements, the source redshift will be known, and we will be able to obtain precise measurements of the Hubble constant H0 via the distance–redshift relation. However, most observed mergers are not expected to have electromagnetic counterparts, which prevents a direct redshift measurement. In this scenario, one possibility is to use the dark sirens method that statistically marginalizes over all the potential host galaxies within the GW location volume to provide a probabilistic source redshift. Here we presented H0 measurements using two new dark sirens compared to previous analyses using DECam data: GW190924$\_$021846 and GW200202$\_$154313. The photometric redshifts of the possible host galaxies of these two events are acquired from the DECam Local Volume Exploration Survey (DELVE) carried out on the Blanco telescope at Cerro Tololo. The combination of the H0 posterior from GW190924$\_$021846 and GW200202$\_$154313 together with the bright siren GW170817 leads to $H_{0} = 68.84^{+15.51}_{-7.74}\, \rm {km\, s^{-1}\, Mpc^{-1}}$. Including these two dark sirens improves the 68  per cent confidence interval (CI) by 7  per cent over GW170817 alone. This demonstrates that the addition of well-localized dark sirens in such analysis improves the precision of cosmological measurements. Using a sample containing 10 well-localized dark sirens observed during the third LIGO/Virgo observation run, without the inclusion of GW170817, we determine a measurement of $H_{0} = 76.00^{+17.64}_{-13.45}\, \rm {km\, s^{-1}\, Mpc^{-1}}$.

     
    more » « less
  2. Abstract

    We present a spectroscopic analysis of Eridanus IV (Eri IV) and Centaurus I (Cen I), two ultrafaint dwarf galaxies of the Milky Way. Using IMACS/Magellan spectroscopy, we identify 28 member stars of Eri IV and 34 member stars of Cen I. For Eri IV, we measure a systemic velocity ofvsys=31.51.2+1.3kms1, and velocity dispersionσv=6.10.9+1.2kms1. Additionally, we measure the metallicities of 16 member stars of Eri IV. We find a metallicity of[Fe/H]=2.870.07+0.08, and resolve a dispersion ofσ[Fe/H]=0.20 ± 0.09. The mean metallicity is marginally lower than all other known ultrafaint dwarf galaxies, making it one of the most metal-poor galaxies discovered thus far. Eri IV also has a somewhat unusual right-skewed metallicity distribution. For Cen I, we find a velocityvsys= 44.9 ± 0.8 km s−1, and velocity dispersionσv=4.20.5+0.6kms1. We measure the metallicities of 27 member stars of Cen I, and find a mean metallicity [Fe/H] = −2.57 ± 0.08, and metallicity dispersionσ[Fe/H]=0.380.05+0.07. We calculate the systemic proper motion, orbit, and the astrophysical J-factor for each system, the latter of which indicates that Eri IV is a good target for indirect dark matter detection. We also find no strong evidence for tidal stripping of Cen I or Eri IV. Overall, our measurements confirm that Eri IV and Cen I are dark-matter-dominated galaxies with properties largely consistent with other known ultrafaint dwarf galaxies. The low metallicity, right-skewed metallicity distribution, and high J-factor make Eri IV an especially interesting candidate for further follow-up.

     
    more » « less
  3. Abstract We present the discovery of DELVE 6, an ultra-faint stellar system identified in the second data release of the DECam Local Volume Exploration (DELVE) survey. Based on a maximum-likelihood fit to its structure and stellar population, we find that DELVE 6 is an old ( τ > 9.8 Gyr at 95% confidence) and metal-poor ([Fe/H] < −1.17 dex at 95% confidence) stellar system with an absolute magnitude of M V = − 1.5 − 0.6 + 0.4 mag and an azimuthally averaged half-light radius of r 1 / 2 = 10 − 3 + 4 pc. These properties are consistent with the population of ultra-faint star clusters uncovered by recent surveys. Interestingly, DELVE 6 is located at an angular separation of ∼10° from the center of the Small Magellanic Cloud (SMC), corresponding to a 3D physical separation of ∼20 kpc given the system’s observed distance ( D ⊙ = 80 kpc). This also places the system ∼35 kpc from the center of the Large Magellanic Cloud (LMC), lying within recent constraints on the size of the LMC’s dark matter halo. We tentatively measure the proper motion of DELVE 6 using data from Gaia, which we find supports a potential association between the system and the LMC/SMC. Although future kinematic measurements will be necessary to determine its origins, we highlight that DELVE 6 may represent only the second or third ancient ( τ > 9 Gyr) star cluster associated with the SMC, or one of fewer than two dozen ancient clusters associated with the LMC. Nonetheless, we cannot currently rule out the possibility that the system is a distant Milky Way halo star cluster. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Abstract We report the discovery of six ultra-faint Milky Way satellites identified through matched-filter searches conducted using Dark Energy Camera (DECam) data processed as part of the second data release of the DECam Local Volume Exploration (DELVE) survey. Leveraging deep Gemini/GMOS-N imaging (for four candidates) as well as follow-up DECam imaging (for two candidates), we characterize the morphologies and stellar populations of these systems. We find that these candidates all share faint absolute magnitudes ( M V ≥ −3.2 mag) and old, metal-poor stellar populations ( τ > 10 Gyr, [Fe/H] < −1.4 dex). Three of these systems are more extended ( r 1/2 > 15 pc), while the other three are compact ( r 1/2 < 10 pc). From these properties, we infer that the former three systems (Boötes V, Leo Minor I, and Virgo II) are consistent with ultra-faint dwarf galaxy classifications, whereas the latter three (DELVE 3, DELVE 4, and DELVE 5) are likely ultra-faint star clusters. Using data from the Gaia satellite, we confidently measure the proper motion of Boötes V, Leo Minor I, and DELVE 4, and tentatively detect a proper-motion signal from DELVE 3 and DELVE 5; no signal is detected for Virgo II. We use these measurements to explore possible associations between the newly discovered systems and the Sagittarius dwarf spheroidal, the Magellanic Clouds, and the Vast Polar Structure, finding several plausible associations. Our results offer a preview of the numerous ultra-faint stellar systems that will soon be discovered by the Vera C. Rubin Observatory and highlight the challenges of classifying the faintest stellar systems. 
    more » « less
    Free, publicly-accessible full text available July 28, 2024
  5. Abstract

    We present a detailed chemical abundance analysis of the brightest star in the ultrafaint dwarf (UFD) galaxy candidate Cetus II from high-resolution Magellan/MIKE spectra. For this star, DES J011740.53-173053, abundances or upper limits of 18 elements from carbon to europium are derived. Its chemical abundances generally follow those of other UFD galaxy stars, with a slight enhancement of theα-elements (Mg, Si, and Ca) and low neutron-capture element (Sr, Ba, and Eu) abundances supporting the classification of Cetus II as a likely UFD. The star exhibits lower Sc, Ti, and V abundances than Milky Way (MW) halo stars with similar metallicity. This signature is consistent with yields from a supernova originating from a star with a mass of ∼11.2M. In addition, the star has a potassium abundance of [K/Fe] = 0.81, which is somewhat higher than the K abundances of MW halo stars with similar metallicity, a signature that is also present in a number of UFD galaxies. A comparison including globular clusters and stellar stream stars suggests that high K is a specific characteristic of some UFD galaxy stars and can thus be used to help classify objects as UFD galaxies.

     
    more » « less
  6. Abstract We report the discovery of Pegasus IV, an ultra-faint dwarf galaxy found in archival data from the Dark Energy Camera processed by the DECam Local Volume Exploration Survey. Pegasus IV is a compact, ultra-faint stellar system ( r 1 / 2 = 41 − 6 + 8 pc; M V = −4.25 ± 0.2 mag) located at a heliocentric distance of 90 − 6 + 4 kpc . Based on spectra of seven nonvariable member stars observed with Magellan/IMACS, we confidently resolve Pegasus IV’s velocity dispersion, measuring σ v = 3.3 − 1.1 + 1.7 km s −1 (after excluding three velocity outliers); this implies a mass-to-light ratio of M 1 / 2 / L V , 1 / 2 = 167 − 99 + 224 M ⊙ / L ⊙ for the system. From the five stars with the highest signal-to-noise spectra, we also measure a systemic metallicity of [Fe/H] = − 2.63 − 0.30 + 0.26 dex, making Pegasus IV one of the most metal-poor ultra-faint dwarfs. We tentatively resolve a nonzero metallicity dispersion for the system. These measurements provide strong evidence that Pegasus IV is a dark-matter-dominated dwarf galaxy, rather than a star cluster. We measure Pegasus IV’s proper motion using data from Gaia Early Data Release 3, finding ( μ α * , μ δ ) = (0.33 ± 0.07, −0.21 ± 0.08) mas yr −1 . When combined with our measured systemic velocity, this proper motion suggests that Pegasus IV is on an elliptical, retrograde orbit, and is currently near its orbital apocenter. Lastly, we identify three potential RR Lyrae variable stars within Pegasus IV, including one candidate member located more than 10 half-light radii away from the system’s centroid. The discovery of yet another ultra-faint dwarf galaxy strongly suggests that the census of Milky Way satellites is still incomplete, even within 100 kpc. 
    more » « less
  7. Abstract

    We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete toMV∼ (−7, −10) mag for galaxies atD= (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of2.20.12+0.05Mpc, a potential satellite of the Local Volume galaxy NGC 55, separated by 47′ (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absoluteV-band magnitude of8.00.3+0.5magand an azimuthally averaged physical half-light radius of2.20.4+0.5kpc, making this one of the lowest surface brightness galaxies ever found withμ=32.3magarcsec2. This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host.

     
    more » « less
  8. ABSTRACT

    We present a sample of 19 583 ultracool dwarf candidates brighter than z ≤23 selected from the Dark Energy Survey DR2 coadd data matched to VHS DR6, VIKING DR5, and AllWISE covering ∼ 480 deg2. The ultracool candidates were first pre-selected based on their (i–z), (z–Y), and (Y–J) colours. They were further classified using a method that compares their optical, near-infrared, and mid-infrared colours against templates of M, L, and T dwarfs. 14 099 objects are presented as new L and T candidates and the remaining objects are from the literature, including 5342 candidates from our previous work. Using this new and deeper sample of ultracool dwarf candidates we also present: 20 new candidate members to nearby young moving groups and associations, variable candidate sources and four new wide binary systems composed of two ultracool dwarfs. Finally, we also show the spectra of 12 new ultracool dwarfs discovered by our group and presented here for the first time. These spectroscopically confirmed objects are a sanity check of our selection of ultracool dwarfs and photometric classification method.

     
    more » « less
  9. Abstract We report the detection of three RR Lyrae (RRL) stars (two RRc and one RRab) in the ultra-faint dwarf (UFD) galaxy Centaurus I (Cen I) and two Milky Way (MW) δ Scuti/SX Phoenicis stars based on multi-epoch giz DECam observations. The two RRc stars are located within two times the half-light radius ( r h ) of Cen I, while the RRab star (CenI-V3) is at ∼6 r h . The presence of three distant RRL stars clustered this tightly in space represents a 4.7 σ excess relative to the smooth distribution of RRL in the Galactic halo. Using the newly detected RRL stars, we obtain a distance modulus to Cen I of μ 0 = 20.354 ± 0.002 mag ( σ = 0.03 mag), a heliocentric distance of D ⊙ = 117.7 ± 0.1 kpc ( σ = 1.6 kpc), with systematic errors of 0.07 mag and 4 kpc. The location of the Cen I RRL stars in the Bailey diagram is in agreement with other UFD galaxies (mainly Oosterhoff II). Finally, we study the relative rate of RRc+RRd (RRcd) stars ( f cd ) in UFD and classical dwarf galaxies. The full sample of MW dwarf galaxies gives a mean of f cd = 0.28. While several UFD galaxies, such as Cen I, present higher RRcd ratios, if we combine the RRL populations of all UFD galaxies, the RRcd ratio is similar to the one obtained for the classical dwarfs ( f cd ∼ 0.3). Therefore, there is no evidence for a different fraction of RRcd stars in UFD and classical dwarf galaxies. 
    more » « less
  10. null (Ed.)