skip to main content


Search for: All records

Creators/Authors contains: "Paik, Hanjong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A BiFeO3film is grown epitaxially on a PrScO3single crystal substrate which imparts ~ 1.45% of biaxial tensile strain to BiFeO3resulting from lattice misfit. The biaxial tensile strain effect on BiFeO3is investigated in terms of crystal structure, Poisson ratio, and ferroelectric domain structure. Lattice resolution scanning transmission electron microscopy, precession electron diffraction, and X-ray diffraction results clearly show that in-plane interplanar distance of BiFeO3is the same as that of PrScO3with no sign of misfit dislocations, indicating that the biaxial tensile strain caused by lattice mismatch between BiFeO3and PrScO3are stored as elastic energy within BiFeO3film. Nano-beam electron diffraction patterns compared with structure factor calculation found that the BiFeO3maintains rhombohedral symmetry, i.e., space group ofR3c. The pattern analysis also revealed two crystallographically distinguishable domains. Their relations with ferroelectric domain structures in terms of size and spontaneous polarization orientations within the domains are further understood using four-dimensional scanning transmission electron microscopy technique.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract The layered square-planar nickelates, Nd n +1 Ni n O 2 n +2 , are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in Nd 6 Ni 5 O 12 thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the n  = 3 Ruddlesden-Popper compound, Nd 4 Ni 3 O 10 , and subsequent reduction to the square-planar phase, Nd 4 Ni 3 O 8 . We synthesize our highest quality Nd 4 Ni 3 O 10 films under compressive strain on LaAlO 3 (001), while Nd 4 Ni 3 O 10 on NdGaO 3 (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties. A high density of extended defects forms in Nd 4 Ni 3 O 10 on SrTiO 3 (001). Films reduced on LaAlO 3 become insulating and form compressive strain-induced c -axis canting defects, while Nd 4 Ni 3 O 8 films on NdGaO 3 are metallic. This work provides a pathway to the synthesis of Nd n +1 Ni n O 2 n +2 thin films and sets limits on the ability to strain engineer these compounds via epitaxy. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Strain-engineering is a powerful means to tune the polar, structural, and electronic instabilities of incipient ferroelectrics. KTaO3 is near a polar instability and shows anisotropic superconductivity in electron-doped samples. Here, we demonstrate growth of high-quality KTaO3 thin films by molecular-beam epitaxy. Tantalum was provided by either a suboxide source emanating a TaO2 flux from Ta2O5 contained in a conventional effusion cell or an electron-beam-heated tantalum source. Excess potassium and a combination of ozone and oxygen (10% O3 + 90% O2) were simultaneously supplied with the TaO2 (or tantalum) molecular beams to grow the KTaO3 films. Laue fringes suggest that the films are smooth with an abrupt film/substrate interface. Cross-sectional scanning transmission electron microscopy does not show any extended defects and confirms that the films have an atomically abrupt interface with the substrate. Atomic force microscopy reveals atomic steps at the surface of the grown films. Reciprocal space mapping demonstrates that the films, when sufficiently thin, are coherently strained to the SrTiO3 (001) and GdScO3 (110) substrates. 
    more » « less
  4. Strain-engineering is a powerful means to tune the polar, structural, and electronic instabilities of incipient ferroelectrics. KTaO 3 is near a polar instability and shows anisotropic superconductivity in electron-doped samples. Here, we demonstrate growth of high-quality KTaO 3 thin films by molecular-beam epitaxy. Tantalum was provided by either a suboxide source emanating a TaO 2 flux from Ta 2 O 5 contained in a conventional effusion cell or an electron-beam-heated tantalum source. Excess potassium and a combination of ozone and oxygen (10% O 3 + 90% O 2 ) were simultaneously supplied with the TaO 2 (or tantalum) molecular beams to grow the KTaO 3 films. Laue fringes suggest that the films are smooth with an abrupt film/substrate interface. Cross-sectional scanning transmission electron microscopy does not show any extended defects and confirms that the films have an atomically abrupt interface with the substrate. Atomic force microscopy reveals atomic steps at the surface of the grown films. Reciprocal space mapping demonstrates that the films, when sufficiently thin, are coherently strained to the SrTiO 3 (001) and GdScO 3 (110) substrates. 
    more » « less
  5. Rutile compounds have exotic functional properties that can be applied for various electronic applications; however, the limited availability of epitaxial substrates has restricted the study of rutile thin films to a limited range of lattice parameters. Here, rutile GeO 2 is demonstrated as a new rutile substrate with lattice parameters of [Formula: see text] and [Formula: see text]. Rutile GeO 2 single crystals up to 4 mm in size are grown by the flux method. X-ray diffraction reveals high crystallinity with a rocking curve having a full width half-maximum of 0.0572°. After mechanical polishing, a surface roughness of less than 0.1 nm was obtained, and reflection high-energy electron diffraction shows a crystalline surface. Finally, epitaxial growth of (110)-oriented TiO 2 thin films on GeO 2 substrates was demonstrated using molecular beam epitaxy. Templated by rutile GeO 2 substrates, our findings open the possibility of stabilizing new rutile thin films and strain states for the tuning of physical properties. 
    more » « less
  6. Abstract

    The drive toward non‐von Neumann device architectures has led to an intense focus on insulator‐to‐metal (IMT) and the converse metal‐to‐insulator (MIT) transitions. Studies of electric field‐driven IMT in the prototypical VO2thin‐film channel devices are largely focused on the electrical and elastic responses of the films, but the response of the corresponding TiO2substrate is often overlooked, since it is nominally expected to be electrically passive and elastically rigid. Here, in‐operando spatiotemporal imaging of the coupled elastodynamics using X‐ray diffraction microscopy of a VO2film channel device on TiO2substrate reveals two new surprises. First, the film channel bulges during the IMT, the opposite of the expected shrinking in the film undergoing IMT. Second, a microns thick proximal layer in the substrate also coherently bulges accompanying the IMT in the film, which is completely unexpected. Phase‐field simulations of coupled IMT, oxygen vacancy electronic dynamics, and electronic carrier diffusion incorporating thermal and strain effects suggest that the observed elastodynamics can be explained by the known naturally occurring oxygen vacancies that rapidly ionize (and deionize) in concert with the IMT (MIT). Fast electrical‐triggering of the IMT via ionizing defects and an active “IMT‐like” substrate layer are critical aspects to consider in device applications.

     
    more » « less
  7. Utilizing the powerful combination of molecular-beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES), we produce and study the effect of different terminating layers on the electronic structure of the metallic delafossite PdCoO 2 . Attempts to introduce unpaired electrons and synthesize new antiferromagnetic metals akin to the isostructural compound PdCrO 2 have been made by replacing cobalt with iron in PdCoO 2 films grown by MBE. Using ARPES, we observe similar bulk bands in these PdCoO 2 films with Pd-, CoO 2 -, and FeO 2 -termination. Nevertheless, Pd- and CoO 2 -terminated films show a reduced intensity of surface states. Additionally, we are able to epitaxially stabilize PdFe x Co 1− x O 2 films that show an anomaly in the derivative of the electrical resistance with respect to temperature at 20 K, but do not display pronounced magnetic order. 
    more » « less
  8. Ferroelectric nanomaterials offer the promise of switchable electronic properties at the surface, with implications for photo- and electrocatalysis. Studies to date on the effect of ferroelectric surfaces in electrocatalysis have been primarily limited to nanoparticle systems where complex interfaces arise. Here, we use MBE-grown epitaxial BaTiO3 thin films with atomically sharp interfaces as model surfaces to demonstrate the effect of ferroelectric polarization on the electronic structure, intermediate binding energy, and electrochemical activity toward the hydrogen evolution reaction (HER). Surface spectroscopy and ab initio DFT +U calculations of the well-defined (001) surfaces indicate that an upward polarized surface reduces the work function relative to downward polarization and leads to a smaller HER barrier, in agreement with the higher activity observed experimentally. Employing ferroelectric polarization to create multiple adsorbate interactions over a single electrocatalytic surface, as demonstrated in this work, may offer new opportunities for nanoscale catalysis design beyond traditional descriptors. 
    more » « less