skip to main content


Search for: All records

Creators/Authors contains: "Palkovacs, Eric P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although the concept of connectivity is ubiquitous in ecology and evolution, its definition is often inconsistent, particularly in interdisciplinary research. In an ecological context, population connectivity refers to the movement of individuals or species across a landscape. It is measured by locating organisms and tracking their occurrence across space and time. In an evolutionary context, connectivity is typically used to describe levels of current and past gene flow, calculated from the degree of genetic similarity between populations. Both connectivity definitions are useful in their specific contexts, but rarely are these two perspectives combined. Different definitions of connectivity could result in misunderstandings across subdisciplines. Here, we unite ecological and evolutionary perspectives into a single unifying framework by advocating for connectivity to be conceptualized as a generational continuum. Within this framework, connectivity can be subdivided into three timescales: (1) within a generation (e.g., movement), (2) across one parent-offspring generation (e.g., dispersal), and (3) across two or more generations (e.g., gene flow), with each timescale determining the relevant context and dictating whether the connectivity has ecological or evolutionary consequences. Applying our framework to real-world connectivity questions can help to identify sampling limitations associated with a particular methodology, further develop research questions and hypotheses, and investigate eco-evolutionary feedback interactions that span the connectivity continuum. We hope this framework will serve as a foundation for conducting and communicating research across subdisciplines, resulting in a more holistic understanding of connectivity in natural systems. 
    more » « less
    Free, publicly-accessible full text available May 24, 2024
  2. Growth–survival tradeoffs may be a generalizable mechanism influencing trajectories of prey evolution. Here, we investigate evolutionary contributions to growth and survival in western mosquitofish ( Gambusia affinis ) from 10 populations from high- and low-predation ancestral environments. We assess (i) the degree to which evolutionary components of growth and survival are consistent or inconsistent across populations within ancestral predation environments, and (ii) whether growth and survival trade off at the population level. We measure growth and survival on groups of common-reared mosquitofish in pond mesocosms. We find that evolution of growth is consistent, with fish from low-predation ancestral environments showing higher growth, while the evolution of survival is inconsistent, with significant population-level divergence unrelated to ancestral predation environment. Such inconsistency prevents a growth–survival tradeoff across populations. Thus, the generalizability of contemporary evolution probably depends on local context of evolutionary tradeoffs, and a continued focus on singular selective agents (e.g. predators) without such local context will impede insights into generalizable evolutionary patterns. 
    more » « less
  3. Abstract

    Dams and other anthropogenic barriers have caused global ecological and hydrological upheaval in the blink of the geological eye. In the present article, we synthesize 307 studies in a systematic review of contemporary evolution following reduced connectivity and habitat alteration on freshwater fishes. Genetic diversity loss was more commonly observed for small populations impounded in small habitat patches for many generations behind low-passability barriers. Studies show that impoundments can cause rapid adaptive evolution in migration timing, behavior, life history, temperature tolerance, and morphology, as well as reduce phenotypic variance, which can alter adaptive potential and ecological roles. Fish passage structures can restore migratory populations but also create artificial selection pressures on body size and migration. The accelerating pace of dam removals and the paucity of data for fishes other than salmonids, other vertebrates, invertebrates, and tropical and southern hemisphere organisms highlights the urgent need for more studies on the rapid evolutionary effects of dams.

     
    more » « less
  4. Abstract Humans are dominant global drivers of ecological and evolutionary change, rearranging ecosystems and natural selection. In the present article, we show increasing evidence that human activity also plays a disproportionate role in shaping the eco-evolutionary potential of systems—the likelihood of ecological change generating evolutionary change and vice versa. We suggest that the net outcome of human influences on trait change, ecology, and the feedback loops that link them will often (but not always) be to increase eco-evolutionary potential, with important consequences for stability and resilience of populations, communities, and ecosystems. We also integrate existing ecological and evolutionary metrics to predict and manage the eco-evolutionary dynamics of human-affected systems. To support this framework, we use a simple eco–evo feedback model to show that factors affecting eco-evolutionary potential are major determinants of eco-evolutionary dynamics. Our framework suggests that proper management of anthropogenic effects requires a science of human effects on eco-evolutionary potential. 
    more » « less
  5. Coulson, Tim (Ed.)
  6. null (Ed.)
  7. null (Ed.)
    Body size is a key functional trait that is predicted to decline under warming. Warming is known to cause size declines via phenotypic plasticity, but evolutionary responses of body size to warming are poorly understood. To test for warming-induced evolutionary responses of body size and growth rates, we used populations of mosquitofish ( Gambusia affinis ) recently established (less than 100 years) from a common source across a strong thermal gradient (19–33°C) created by geothermal springs. Each spring is remarkably stable in temperature and is virtually closed to gene flow from other thermal environments. Field surveys show that with increasing site temperature, body size distributions become smaller and the reproductive advantage of larger body size decreases. After common rearing to reveal recently evolved trait differences, warmer-source populations expressed slowed juvenile growth rates and increased reproductive effort at small sizes. These results are consistent with an adaptive basis of the plastic temperature–size rule, and they suggest that temperature itself can drive the evolution of countergradient variation in growth rates. The rapid evolution of reduced juvenile growth rates and greater reproduction at a small size should contribute to substantial body downsizing in populations, with implications for population dynamics and for ecosystems in a warming world. 
    more » « less
  8. null (Ed.)
    Abstract Urbanization is changing Earth's ecosystems by altering the interactions and feedbacks between the fundamental ecological and evolutionary processes that maintain life. Humans in cities alter the eco-evolutionary play by simultaneously changing both the actors and the stage on which the eco-evolutionary play takes place. Urbanization modifies land surfaces, microclimates, habitat connectivity, ecological networks, food webs, species diversity, and species composition. These environmental changes can lead to changes in phenotypic, genetic, and cultural makeup of wild populations that have important consequences for ecosystem function and the essential services that nature provides to human society, such as nutrient cycling, pollination, seed dispersal, food production, and water and air purification. Understanding and monitoring urbanization-induced evolutionary changes is important to inform strategies to achieve sustainability. In the present article, we propose that understanding these dynamics requires rigorous characterization of urbanizing regions as rapidly evolving, tightly coupled human–natural systems. We explore how the emergent properties of urbanization affect eco-evolutionary dynamics across space and time. We identify five key urban drivers of change—habitat modification, connectivity, heterogeneity, novel disturbances, and biotic interactions—and highlight the direct consequences of urbanization-driven eco-evolutionary change for nature's contributions to people. Then, we explore five emerging complexities—landscape complexity, urban discontinuities, socio-ecological heterogeneity, cross-scale interactions, legacies and time lags—that need to be tackled in future research. We propose that the evolving metacommunity concept provides a powerful framework to study urban eco-evolutionary dynamics. 
    more » « less
  9. Historically, many biologists assumed that evolution and ecology acted independently because evolution occurred over distances too great to influence most ecological patterns. Today, evidence indicates that evolution can operate over a range of spatial scales, including fine spatial scales. Thus, evolutionary divergence across space might frequently interact with the mechanisms that also determine spatial ecological patterns. Here, we synthesize insights from 500 eco-evolutionary studies and develop a predictive framework that seeks to understand whether and when evolution amplifies, dampens, or creates ecological patterns. We demonstrate that local adaptation can alter everything from spatial variation in population abundances to ecosystem properties. We uncover 14 mechanisms that can mediate the outcome of evolution on spatial ecological patterns. Sometimes, evolution amplifies environmental variation, especially when selection enhances resource uptake or patch selection. The local evolution of foundation or keystone species can create ecological patterns where none existed originally. However, most often, we find that evolution dampens existing environmental gradients, because local adaptation evens out fitness across environments and thus counteracts the variation in associated ecological patterns. Consequently, evolution generally smooths out the underlying heterogeneity in nature, making the world appear less ragged than it would be in the absence of evolution. We end by highlighting the future research needed to inform a fully integrated and predictive biology that accounts for eco-evolutionary interactions in both space and time.

     
    more » « less