skip to main content


Search for: All records

Creators/Authors contains: "Park, Kyung Soo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Vaccines are an important tool in the rapidly evolving repertoire of immunotherapies in oncology. Although cancer vaccines have been investigated for over 30 years, very few have achieved meaningful clinical success. However, recent advances in areas such antigen identification, formulation development and manufacturing, combination therapy regimens, and indication and patient selection hold promise to reinvigorate the field. Here, we provide a timely update on the clinical status of cancer vaccines. We identify and critically analyze 360 active trials of cancer vaccines according to delivery vehicle, antigen type, indication, and other metrics, as well as highlight eight globally approved products. Finally, we discuss current limitations and future applications for clinical translation of cancer vaccines.

     
    more » « less
  2. Abstract

    Monoclonal antibodies that target SARS-CoV-2 with high affinity are valuable for a wide range of biomedical applications involving novel coronavirus disease (COVID-19) diagnosis, treatment, and prophylactic intervention. Strategies for the rapid and reliable isolation of these antibodies, especially potent neutralizing antibodies, are critical toward improved COVID-19 response and informed future response to emergent infectious diseases. In this study, single B cell screening was used to interrogate antibody repertoires of immunized mice and isolate antigen-specific IgG1+memory B cells. Using these methods, high-affinity, potent neutralizing antibodies were identified that target the receptor-binding domain of SARS-CoV-2. Further engineering of the identified molecules to increase valency resulted in enhanced neutralizing activity. Mechanistic investigation revealed that these antibodies compete with ACE2 for binding to the receptor-binding domain of SARS-CoV-2. These antibodies may warrant further development for urgent COVID-19 applications. Overall, these results highlight the potential of single B cell screening for the rapid and reliable identification of high-affinity, potent neutralizing antibodies for infectious disease applications.

     
    more » « less