skip to main content


Search for: All records

Creators/Authors contains: "Park, So-Yon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cuscuta spp. are obligate parasites that connect to host vascular tissue using a haustorium. In addition to water, nutrients, and metabolites, a large number of mRNAs are bidirectionally exchanged between Cuscuta spp. and their hosts. This trans-specific movement of mRNAs raises questions about whether these molecules function in the recipient species. To address the possibility that mobile mRNAs are ultimately translated, we built upon recent studies that demonstrate a role for transfer RNA (tRNA)-like structures (TLSs) in enhancing mRNA systemic movement. C. campestris was grown on Arabidopsis that expressed a β-glucuronidase (GUS) reporter transgene either alone or in GUS-tRNA fusions. Histochemical staining revealed localization in tissue of C. campestris grown on Arabidopsis with GUS-tRNA fusions, but not in C. campestris grown on Arabidopsis with GUS alone. This corresponded with detection of GUS transcripts in Cuscuta on Arabidopsis with GUS-tRNA, but not in C. campestris on Arabidopsis with GUS alone. Similar results were obtained with Arabidopsis host plants expressing the same constructs containing an endoplasmic reticulum localization signal. In C. campestris, GUS activity was localized in the companion cells or phloem parenchyma cells adjacent to sieve tubes. We conclude that host-derived GUS mRNAs are translated in C. campestris and that the TLS fusion enhances RNA mobility in the host-parasite interactions. 
    more » « less
  2. Societal Impact Statement Summary

    Rafflesiais of great interest as one of the only two plants known to have completely lost its chloroplast genome.Rafflesiais a holoparasite and an endophyte that lives inside the tissues of its host, a tropical grape vine (Tetrastigma), emerging only to bloom—with the largest flower of any plant. Here, we report the firstRafflesiaseed transcriptome and compare it with those of other plants to deepen our understanding of its extraordinary life history.

    We assembled a transcriptome from RNA extracted from seeds of the Philippine endemicRafflesia speciosaand compared this with those of other plants, includingArabidopsis, parasitic plantsStrigaandCuscuta, and the mycoheterotrophic orchidAnoectochilus.

    Genetic and metabolic seed pathways inRafflesiawere generally similar to the other plant species. However, there were some notable exceptions. We found evidence of horizontal transfer of a gene potentially involved in circumventing host defenses. Moreover, we identified a possible convergence among parasitic plants becauseRafflesia,Striga, andCuscutashared important similarities. We were unable to find evidence of genes involved in mycorrhizal symbiosis, suggesting that mycoheterotrophy is unlikely to play a role inRafflesiaparasitism.

    To date, ex situ propagation ofRafflesiaby seed has been mostly unsuccessful. Our research is a bold step forward in understanding the fundamentals ofRafflesiaseed biology that will inform the continued propagation and seed‐banking efforts concerning this recalcitrant plant. We discuss our findings in the broader context of the conservation of a genus in peril.

     
    more » « less