skip to main content


Search for: All records

Creators/Authors contains: "Parker, Gary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    River dams provide many benefits, including flood control. However, due to constantly evolving channel morphology, downstream conveyance of floodwaters following dam closure is difficult to predict. Here, we test the hypothesis that the incised, enlarged channel downstream of dams provides enhanced water conveyance, using a case study from the lower Yellow River, China. We find that, although flood stage is lowered for small floods, counterintuitively, flood stage downstream of a dam can be amplified for moderate and large floods. This arises because bed incision is accompanied by sediment coarsening, which facilitates development of large dunes that increase flow resistance and reduce velocity relative to pre-dam conditions. Our findings indicate the underlying mechanism for such flood amplification may occur in >80% of fine-grained rivers, and suggest the need to reconsider flood control strategies in such rivers worldwide.

     
    more » « less
  2. Dendritic, i.e., tree-like, river networks are ubiquitous features on Earth’s landscapes; however, how and why river networks organize themselves into this form are incompletely understood. A branching pattern has been argued to be an optimal state. Therefore, we should expect models of river evolution to drastically reorganize (suboptimal) purely nondendritic networks into (more optimal) dendritic networks. To date, current physically based models of river basin evolution are incapable of achieving this result without substantial allogenic forcing. Here, we present a model that does indeed accomplish massive drainage reorganization. The key feature in our model is basin-wide lateral incision of bedrock channels. The addition of this submodel allows for channels to laterally migrate, which generates river capture events and drainage migration. An important factor in the model that dictates the rate and frequency of drainage network reorganization is the ratio of two parameters, the lateral and vertical rock erodibility constants. In addition, our model is unique from others because its simulations approach a dynamic steady state. At a dynamic steady state, drainage networks persistently reorganize instead of approaching a stable configuration. Our model results suggest that lateral bedrock incision processes can drive major drainage reorganization and explain apparent long-lived transience in landscapes on Earth.

     
    more » « less
  3. Incising rivers may be confined by low-slope, erodible hillslopes or steep, resistant sidewalls. In the latter case, the system forms a canyon. We present a morphodynamic model that includes the essential elements of a canyon incising into a plateau, including 1) abrasion-driven channel incision, 2) migration of a canyon-head knickpoint, 3) sediment feed from an alluvial channel upstream of the knickpoint, and 4) production of sediment by sidewall collapse. We calculate incision in terms of collision of clasts with the bed. We calculate knickpoint migration using a moving-boundary formulation that allows a slope discontinuity where the channel head meets an alluvial plateau feeder channel. Rather than modeling sidewall collapse events, we model long-term behavior using a constant sidewall slope as the channel incises. Our morphodynamic model specifically applies to canyon, rather than river–hillslope evolution. We implement it for Rainbow Canyon, CA. Salient results are as follows: 1) Sediment supply from collapsing canyon sidewalls can be substantially larger than that supplied from the feeder channel on the plateau. 2) For any given quasi-equilibrium canyon bedrock slope, two conjugate slopes are possible for the alluvial channel upstream, with the lower of the two corresponding to a substantially lower knickpoint migration rate and higher preservation potential. 3) Knickpoint migration occurs at a substantially faster time scale than regrading of the bedrock channel itself, underlying the significance of disequilibrium processes. Although implemented for constant climactic conditions, the model warrants extension to long-term climate variation.

     
    more » « less
  4. Abstract

    Despite a multitude of models predicting sediment transport dynamics in open‐channel flow, self‐organized vertical density stratification that dampens flow turbulence due to the interaction between fluid and sediment has not been robustly validated with field observations from natural rivers. Turbulence‐suppressing density stratification can develop in channels with low channel‐bed slope and high sediment concentration. As the Yellow River, China, maintains one of the highest sediment loads in the world for a low sloping system, this location is ideal for documenting particle and fluid interactions that give rise to density stratification. Herein, we present analyses from a study conducted over a range of discharge conditions (e.g., low flow, rising limb, and flood peak) from a lower reach of the Yellow River, whereby water samples were collected at targeted depths to measure sediment concentration and, simultaneously, velocity measurements were collected throughout the flow depth. Importantly, sediment concentration varied by an order of magnitude between base and flood flows. By comparing measured concentration and velocity profiles to predictive models, we show that the magnitude of density stratification increases with sediment concentration. Furthermore, a steady‐state calculation of sediment suspension is used to determine that sediment diffusivity increases with grain size. Finally, we calculate concentration and velocity profiles, showing that steady‐state sediment suspensions are reliably predicted over a range of stratification conditions larger than had been previously documented in natural river flows. We determine that the magnitude of density stratification can be predicted by a function considering an entrainment parameter, sediment concentration, and bed slope.

     
    more » « less
  5. ABSTRACT

    We consider the evolution of the hydraulic geometry of sand‐bed meandering rivers. We study the difference between the timescale of longitudinal river profile adjustment and that of channel width and depth adjustment. We also study the effect of hydrological regime alteration on the evolution of bankfull channel geometry. To achieve this, a previously developed model for the spatiotemporal co‐evolution of bankfull channel characteristics, including bankfull discharge, bankfull width, bankfull depth and down‐channel bed slope, is used. In our modelling framework, flow variability is considered in terms of a specified flow duration curve. Taking advantage of this unique feature, we identify the flow range responsible for long‐term bankfull channel change within the specified flow duration curve. That is, the relative importance of extremely high short‐duration flows compared to moderately high longer duration flows is examined. The Minnesota River, MN, USA, an actively meandering sand‐bed stream, is selected for a case study. The longitudinal profile of the study reach has been in adjustment toward equilibrium since the end of the last glaciation, while its bankfull cross‐section is rapidly widening due to hydrological regime change in the last several decades. We use the model to demonstrate that the timescale for longitudinal channel profile adjustment is much greater than the timescale for cross‐sectional profile adjustment due to a lateral channel shift. We also show that hydrological regime shift is responsible for the recent rapid widening of the Minnesota River. Our analysis suggests that increases in the 5–25% exceedance flows play a more significant role in recent bankfull channel enlargement of the Minnesota River than increase in either the 0.1% exceedance flow or the 90% exceedance flow. © 2020 John Wiley & Sons, Ltd.

     
    more » « less
  6. Fine-grained sediment (grain size under 2,000 μm) builds floodplains and deltas, and shapes the coastlines where much of humanity lives. However, a universal, physically based predictor of sediment flux for fine-grained rivers remains to be developed. Herein, a comprehensive sediment load database for fine-grained channels, ranging from small experimental flumes to megarivers, is used to find a predictive algorithm. Two distinct transport regimes emerge, separated by a discontinuous transition for median bed grain size within the very fine sand range (81 to 154 μm), whereby sediment flux decreases by up to 100-fold for coarser sand-bedded rivers compared to river with silt and very fine sand beds. Evidence suggests that the discontinuous change in sediment load originates from a transition of transport mode between mixed suspended bed load transport and suspension-dominated transport. Events that alter bed sediment size near the transition may significantly affect fluviocoastal morphology by drastically changing sediment flux, as shown by data from the Yellow River, China, which, over time, transitioned back and forth 3 times between states of high and low transport efficiency in response to anthropic activities.

     
    more » « less
  7. Abstract

    We present a simple modeling framework for the codetermination of bankfull discharge and corresponding bankfull channel geometry (width, depth, and longitudinal channel slope) of an alluvial meandering river. We specifically consider a sand‐bed river whose floodplain is capped by a mud‐rich layer. We inquire as to how the wide spectrum of flows to which the river is subjected leads to the establishment of specific values for bankfull discharge and associated bankfull geometry. Here we provide a physically based predictor of bankfull discharge that goes beyond the simple assumption of the 1.5‐year flood discharge. We do this using physics‐based submodels for channel and floodplain processes. We show that bankfull discharge and bankfull geometry are established as a result of (i) floodplain vertical accretion due to overbank deposition, (ii) migration of the inner bank and outer cut bank, (iii) net removal of floodplain sediment and reduction in average floodplain height due to lateral channel shift, and (iv) in‐channel downstream bed material transport. The flow duration curve is employed to quantify the effect of these processes, as well as to account for flow variability. Our model captures the spatiotemporal evolution of bankfull discharge, depth, width, and down‐channel slope toward equilibrium for specified flow duration curve and watershed characteristics. Our new framework can be used for assessing long‐term river response to change in sediment supply or flow duration curve. A model implementation is presented for the case of the Trinity River, TX, USA, to demonstrate the use of the model and its behavior.

     
    more » « less
  8. River deltas grow by repeating cycles of lobe development punctuated by channel avulsions, so that over time, lobes amalgamate to produce a composite landform. Existing models have shown that backwater hydrodynamics are important in avulsion dynamics, but the effect of lobe progradation on avulsion frequency and location has yet to be explored. Herein, a quasi‐2‐D numerical model incorporating channel avulsion and lobe development cycles is developed. The model is validated by the well‐constrained case of a prograding lobe on the Yellow River delta, China. It is determined that with lobe progradation, avulsion frequency decreases, and avulsion length increases, relative to conditions where a delta lobe does not prograde. Lobe progradation lowers the channel bed gradient, which results in channel aggradation over the delta topset that is focused farther upstream, shifting the avulsion location upstream. Furthermore, the frequency and location of channel avulsions are sensitive to the threshold in channel bed superelevation that triggers an avulsion. For example, avulsions occur less frequently with a larger superelevation threshold, resulting in greater lobe progradation and avulsions that occur farther upstream. When the delta lobe length prior to avulsion is a moderate fraction of the backwater length (0.3–), the interplay between variable water discharge and lobe progradation together set the avulsion location, and a model capturing both processes is necessary to predict avulsion timing and location. While this study is validated by data from the Yellow River delta, the numerical framework is rooted in physical relationships and can therefore be extended to other deltaic systems.

     
    more » « less
  9. Abstract

    Turbidity current and coastal storm deposits are commonly characterized by a basal sandy massive (structureless) unit overlying an erosional surface and underlying a parallel or cross‐laminated unit. Similar sequences have been recently identified in fluvial settings as well. Notwithstanding field, laboratory and numerical studies, the mechanisms for emplacement of these massive basal units are still under debate. It is well accepted that the sequence considered here can be deposited by waning‐energy flows, and that the parallel‐laminated units are deposited under transport conditions corresponding to upper plane bed at the dune–antidune transition. Thus, transport conditions that are more intense than those at the dune–antidune transition should deposit massive units. This study presents experimental, open‐channel flow results showing that sandy massive units can be the result of gradual deposition from a thick bedload layer of colliding grains called sheet flow layer. When this layer forms with relatively coarse sand, the non‐dimensional bed shear stress associated with skin friction, the Shields number, is larger than a threshold value approximately equal to 0·4. For values of the Shields number smaller than 0·4 the sheet flow layer disappeared, sediment was transported by a standard bedload layer one or two grain diameters thick, and the bed configuration was characterized by downstream migrating antidunes and washed out dunes. Parallel laminae were found in deposits emplaced with standard bedload transport demonstrating that the same dilute flow can gradually deposit the basal and the parallel‐laminated unit in presence of traction at the depositional boundary. Further, the experiments suggested that two different types of upper plane bed conditions can be defined, one associated with standard bedload transport at the dune–antidune transition, and the other associated with bedload transport in sheet flow mode at the transition between upstream and downstream migrating antidunes.

     
    more » « less