skip to main content


Search for: All records

Creators/Authors contains: "Patel, Parth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Road accidents caused by heavy rain have become a frightening issue in recent years requiring investigation. In this regard, an aerodynamic comparative and experimental rain study is carried out to observe the flow phenomena change around a generic ground vehicle (Ahmed Body at a scale) and the utility truck. In this paper, a Discrete Phase Model (DPM) based computational methodology is used to estimate the effect of rain on aerodynamic performance. First, an experimental rain study of the Ahmed body at a scale that is representative of a car or light truck was conducted at the Wall of Wind (WOW) large-scale testing facility using force measurement equipment. In addition, the experiment allowed drag, lift, and side-force coefficients to be measured at yaw angles up to 55 degrees. Next, experimental results are presented for the Ahmed Body back angle of 35 degrees, then compared to validate the computational model for ground vehicle aerodynamics. Afterwards, we investigated the effect of heavy rainfall (LWC = 30 g/m3) on the external aerodynamics of the utility truck with the morphing boom equipment using the validated computational fluid dynamics method, and the external flow is presented using a computer visualization. Finally, force & moment coefficients and velocity distributions around the utility truck are computed for each case, and the results are compared. Keywords: Experimental Wind-Driven Rain Wind Tunnel Testing, Heavy Rainfall, The Ahmed Body, Utility Truck, Morphing Boom Equipment, Discrete Phase Model (DPM), Automotive Aerodynamics, Computational Fluid Dynamics (CFD) 
    more » « less
  2. Abstract Plant microRNAs (miRNAs) are short, noncoding RNA molecules that restrict gene expression via posttranscriptional regulation and function in several essential pathways, including development, growth, and stress responses. Accurately identifying miRNAs in populations of small RNA sequencing libraries is a computationally intensive process that has resulted in the misidentification of inaccurately annotated miRNA sequences. In recent years, criteria for miRNA annotation have been refined with the aim to reduce these misannotations. Here, we describe miRador, a miRNA identification tool that utilizes the most up-to-date, community-established criteria for accurate identification of miRNAs in plants. We combined target prediction and Parallel Analysis of RNA Ends (PARE) data to assess the precision of the miRNAs identified by miRador. We compared miRador to other commonly used miRNA prediction tools and found that miRador is at least as precise as other prediction tools while being substantially faster than other tools. miRador should be broadly useful for the plant community to identify and annotate miRNAs in plant genomes. 
    more » « less
  3. Global climate change has affected the human race for decades. As a result, severe weather changes and more substantial hurricane impact have become a typical scenario. Utility trucks with the morphing boom equipment are the first responders to access these disaster areas in bad weather conditions and restore the damages caused by the disaster. The stability of the utility trucks while driving in a heavy wind scenario is an essential aspect for the safety of the rescue crew, and aerodynamic forces caused by the wind flow constitute a significant factor that influences the stability of the utility truck. In this paper, the aerodynamic performance of the utility truck is modeled using the incompressible unsteady Reynolds Averaged Navier Stokes (URANS) model. The Ahmed body, a well-recognized benchmark test case used by the computational fluid dynamics (CFD) community for the aerodynamic model validation of automobiles, is used to validate this aerodynamic model. The validated aerodynamic model investigates the impact of heavy wind on the utility truck with the morphing boom equipment. The visualization of the flow field around the utility truck with the force and moment coefficients at various side slip angles are presented in this paper. 
    more » « less
  4. Flow around the Ahmed body is a well-recognized benchmark test case used by the computational fluid dynamics (CFD) community for model validation of automobiles. Even though the geometry of the Ahmed body is simple, the flow field around the object is complex due to flow separation and vortex shedding. In this paper, a Discrete Phase Model (DPM) based computational methodology is presented to estimate the effect of rain on aerodynamic performance and is validated with the experimental data that is available in the literature for the NACA64-210 wing section under different rain intensities. With this validated model, we have investigated the Ahmed body under low and high rain intensities for base slant angles of 25 and 35 degrees. The computed drag coefficient for the Ahmed body under rain conditions, are compared with the experimental data from aerodynamic analysis of the Ahmed body without rain, to evaluate the rain effect. 
    more » « less
  5. Utility trucks with boom equipment function on environmentally sensitive areas and severe terrains where off-road conditions may cause significant damage to the trucks’ mobility and their safe operation. Indeed, considerable variations of landscape elevation and dynamic changes of terrain properties lead to extensive differences in the wheel normal reactions, drastic fluctuations of the rolling resistance at each tire, and finally, substantial changes in the total resistance to motion, which includes both the tire rolling resistance and the resistance due to the truck gravity component. Additionally, lateral forces caused by truck inclinations can lead to instability in motion, too. As a result, a utility truck can become immobilized in either longitudinal or lateral direction of movement because of one or the combination of the following events – loss of longitudinal mobility due to extensive tire slippage at some/all wheels, loss of lateral mobility due to tire side skid or rollover of the truck. To eliminate the above-listed causes that can lead to the utility truck immobilization, this study suggests a novel approach to managing the input/output factors that influence both longitudinal and lateral forces of the utility truck. In fact, the 3D morphing of the boom equipment is proposed as the input factor for managing the wheel normal reactions as the outputs. Ultimately, a changeable positioning of the boom equipment relative to the truck frame results in variable wheel normal reactions, which are the main contributors to the normal tire deformation and soil compaction, and thus, to the rolling resistance of each and all tires. This paper presents and discusses the method and results of computational simulations of the F450-based utility truck with boom equipment on medium mineral soil. The normal reaction at each wheel is evaluated under which the boom equipment morphs safely without causing roll over of the truck and, consequently, the total resistance to the motion force is determined. Modeling and simulation of the truck were conducted with the use of terramechanics-based tire-terrain models. This research study of the rolling resistance contributes to a research project on morphing utility truck, dynamics in severe terrain conditions. Keywords: Utility Truck, Morphing, Terrain Mobility 
    more » « less
  6. Abstract The Solanaceae or “nightshade” family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family’s small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data. We applied a suite of computational tools to predict and annotate two major sRNA classes: (1) microRNAs (miRNAs), typically 20- to 22-nucleotide (nt) RNAs generated from a hairpin precursor and functioning in gene silencing and (2) short interfering RNAs (siRNAs), including 24-nt heterochromatic siRNAs typically functioning to repress repetitive regions of the genome via RNA-directed DNA methylation, as well as secondary phased siRNAs and trans-acting siRNAs generated via miRNA-directed cleavage of a polymerase II-derived RNA precursor. Our analyses described thousands of sRNA loci, including poorly understood clusters of 22-nt siRNAs that accumulate during viral infection. The birth, death, expansion, and contraction of these sRNA loci are dynamic evolutionary processes that characterize the Solanaceae family. These analyses indicate that individuals within the same genus share similar sRNA landscapes, whereas comparisons between distinct genera within the Solanaceae reveal relatively few commonalities. 
    more » « less
  7. Abstract

    Utility trucks are the first responders in extreme climate and severe weather situations, for saving people’s lives to restoring traffic on the roads. However, such trucks can create dangerous situations on the roads, and off-road conditions, while moving, and performing tasks. Trucks equipped with large booms for reaching elevated heights can become unstable due to their geometry change, which can cause a drastic variation of the truck-boom system’s moment of inertia, and the extreme weight re-distribution among the wheels. Morphing capabilities of the utility trucks need to be investigated together with the vehicle-road forces in order to hold the vehicle safe on the roads.

    In this research paper, static analysis and range of the normal reaction at the wheel of the utility truck is performed to characterize a safe working zone of the boom equipment when the truck is in the flat and titled surface. The analysis is performed for 5-degree of freedom boom equipment with revolute and translational joints in a complex constrained space given by the truck design using 3D moment and force-vector analysis. The possible morphing configuration of the boom equipment is examined in order to define static normal reactions at the wheel-road interaction.

    Further, the morphing of the boom equipment is investigated to determine limiting configurations that can be reached without rolling over the truck. In this analysis, it is assumed that the wheels provide enough friction between the tires and road so that tire slippage does not extensively occur, and the utility truck is assumed as a rigid body. In this study, utility truck equipped with boom equipment is utilized in this study for numerical illustration.

     
    more » « less