skip to main content


Search for: All records

Creators/Authors contains: "Pellegrini, Adam F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Soil organic matter decomposition and its interactions with climate depend on whether the organic matter is associated with soil minerals. However, data limitations have hindered global-scale analyses of mineral-associated and particulate soil organic carbon pools and their benchmarking in Earth system models used to estimate carbon cycle–climate feedbacks. Here we analyse observationally derived global estimates of soil carbon pools to quantify their relative proportions and compute their climatological temperature sensitivities as the decline in carbon with increasing temperature. We find that the climatological temperature sensitivity of particulate carbon is on average 28% higher than that of mineral-associated carbon, and up to 53% higher in cool climates. Moreover, the distribution of carbon between these underlying soil carbon pools drives the emergent climatological temperature sensitivity of bulk soil carbon stocks. However, global models vary widely in their predictions of soil carbon pool distributions. We show that the global proportion of model pools that are conceptually similar to mineral-protected carbon ranges from 16 to 85% across Earth system models from the Coupled Model Intercomparison Project Phase 6 and offline land models, with implications for bulk soil carbon ages and ecosystem responsiveness. To improve projections of carbon cycle–climate feedbacks, it is imperative to assess underlying soil carbon pools to accurately predict the distribution and vulnerability of soil carbon.

     
    more » « less
  2. Abstract

    The determinants of fire-driven changes in soil organic carbon (SOC) across broad environmental gradients remains unclear, especially in global drylands. Here we combined datasets and field sampling of fire-manipulation experiments to evaluate where and why fire changes SOC and compared our statistical model to simulations from ecosystem models. Drier ecosystems experienced larger relative changes in SOC than humid ecosystems—in some cases exceeding losses from plant biomass pools—primarily explained by high fire-driven declines in tree biomass inputs in dry ecosystems. Many ecosystem models underestimated the SOC changes in drier ecosystems. Upscaling our statistical model predicted that soils in savannah–grassland regions may have gained 0.64 PgC due to net-declines in burned area over the past approximately two decades. Consequently, ongoing declines in fire frequencies have probably created an extensive carbon sink in the soils of global drylands that may have been underestimated by ecosystem models.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. Akira S Mori (Ed.)
  4. Abstract

    Fire–vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. null (Ed.)
  6. Abstract

    Global change is shifting disturbance regimes that may rapidly change ecosystems, sometimes causing ecosystems to shift between states. Interactions between disturbances such as fire and disease could have especially severe effects, but experimental tests of multi‐decadal changes in disturbance regimes are rare. Here, we surveyed vegetation for 35 years in a 54‐year fire frequency experiment in a temperate oak savanna–forest ecotone that experienced a recent outbreak of oak wilt. Different fire regimes determined whether plots were savanna or forest by regulating tree abundance (r2 = 0.70), but disease rapidly reversed the effect of fire exclusion, increasing mortality by 765% in unburned forests, but causing relatively minor changes in frequently burned savannas. Model simulations demonstrated that disease caused unburned forests to transition towards a unique woodland that was prone to transition to savanna if fire was reintroduced. Consequently, disease–fire interactions could shift ecosystem resilience and biome boundaries as pathogen distributions change.

     
    more » « less
  7. Abstract

    Fire activity is changing dramatically across the globe, with uncertain effects on ecosystem processes, especially below‐ground. Fire‐driven losses of soil carbon (C) are often assumed to occur primarily in the upper soil layers because the repeated combustion of above‐ground biomass limits organic matter inputs into surface soil. However, C losses from deeper soil may occur if frequent burning reduces root biomass inputs of C into deep soil layers or stimulates losses of C via leaching and priming.

    To assess the effects of fire on soil C, we sampled 12 plots in a 51‐year‐long fire frequency manipulation experiment in a temperate oak savanna, where variation in prescribed burning frequency has created a gradient in vegetation structure from closed‐canopy forest in unburned plots to open‐canopy savanna in frequently burned plots.

    Soil C stocks were nonlinearly related to fire frequency, with soil C peaking in savanna plots burned at an intermediate fire frequency and declining in the most frequently burned plots. Losses from deep soil pools were significant, with the absolute difference between intermediately burned plots versus most frequently burned plots more than doubling when the full 1 m sample was considered rather than the top 0–20 cm alone (losses of 98.5 Mg C/ha [−76%] and 42.3 Mg C/ha [−68%] in the full 1 m and 0–20 cm layers respectively). Compared to unburned forested plots, the most frequently burned plots had 65.8 Mg C/ha (−58%) less C in the full 1 m sample. Root biomass below the top 20 cm also declined by 39% with more frequent burning. Concurrent fire‐driven losses of nitrogen and gains in calcium and phosphorus suggest that burning may increase nitrogen limitation and play a key role in the calcium and phosphorus cycles in temperate savannas.

    Synthesis. Our results illustrate that fire‐driven losses in soil C and root biomass in deep soil layers may be critical factors regulating the net effect of shifting fire regimes on ecosystem C in forest‐savanna transitions. Projected changes in soil C with shifting fire frequencies in savannas may be 50% too low if they only consider changes in the topsoil.

     
    more » « less