skip to main content


Search for: All records

Creators/Authors contains: "Pennock, Casey A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    We investigated how lake thermal processes responded to whole lake warming manipulation in an arctic lake through observations and numerical modeling. The warming manipulation was conducted by artificially heating the epilimnion as a proxy for climate warming. We performed numerical modeling with an improved lake scheme based on the Community Land Model (CLM). We simulated a control run (CTL) without warming and a warming manipulation simulation (WARM). Results indicated WARM accurately captured observed temperatures where water stratification was extended in time, and water stability was strengthened. Two additional sensitivity tests with different warming onset dates and of the same warming duration showed that earlier warming onsets are predicted to make the water column more stable and less easily mixed relative to a later onset of warming. The results provide a more complete understanding of lake thermal processes in arctic freshwater lake systems and how they will respond to predicted future warming.

     
    more » « less
  3. Abstract

    Lakes are vulnerable to climate change, and warming rates in the Arctic are faster than anywhere on Earth. Fishes are sensitive to changing temperatures, which directly control physiological processes. Food availability should partly dictate responses to climate change because energetic demands change with temperature, but few studies have simultaneously examined temperature and food availability.

    We used a fully factorial experiment to test effects of food availability and temperature (7.6, 12.7, and 17.4°C; 50 days) on growth, consumption, respiration, and excretion, and effects of temperature (12 and 19.3°C; 27 days) on habitat use and growth of a common, but understudied, mid‐level consumer, slimy sculpinCottus cognatus, in arctic lakes. We also used bioenergetics modelling to predict consumptive demand under future warming scenarios.

    Growth rates were 3.4× higher at 12.7°C in high food compared to low food treatments, but the magnitude of differences depended on temperature. Within low food treatments, there was no statistical difference in growth rates among temperatures, suggesting food limitation. Consumption, respiration, and nitrogen excretion increased with temperature independent of food availability. Lower growth rates coincided with lower phosphorus excretion at the highest temperature, suggesting that fish selectively retained phosphorus at high temperatures and low food. In habitat choice experiments, fish were more likely to use the 12°C side of the tank, closely matching their optimal temperature. We predicted a 9% increase in consumption is required to maintain observed growth under a 4°C warming scenario.

    These results highlight considering changes in food resources and other associated indirect effects (e.g. excretion) that accompany changing temperatures with climate change. Depending on how food webs respond to warming, fish may cope with predicted warming if density‐dependent feedback maintains population sizes.

     
    more » « less
  4. Abstract

    Effects of climate change‐driven disturbance on lake ecosystems can be subtle; indirect effects include increased nutrient loading that could impact ecosystem function. We designed a low‐level fertilization experiment to mimic persistent, climate change‐driven disturbances (deeper thaw, greater weathering, or thermokarst failure) delivering nutrients to arctic lakes. We measured responses of pelagic trophic levels over 12 yr in a fertilized deep lake with fish and a shallow fishless lake, compared to paired reference lakes, and monitored recovery for 6 yr. Relative to prefertilization in the deep lake, we observed a maximum pelagic response in chla(+201%), dissolved oxygen (DO, −43%), and zooplankton biomass (+88%) during the fertilization period (2001–2012). Other responses to fertilization, such as water transparency and fish relative abundance, were delayed, but both ultimately declined. Phyto‐ and zooplankton biomass and community composition shifted with fertilization. The effects of fertilization were less pronounced in the paired shallow lakes, because of a natural thermokarst failure likely impacting the reference lake. In the deep lake there was (a) moderate resistance to change in ecosystem functions at all trophic levels, (b) eventual responses were often nonlinear, and (c) postfertilization recovery (return) times were most rapid at the base of the food web (2–4 yr) while higher trophic levels failed to recover after 6 yr. The timing and magnitude of responses to fertilization in these arctic lakes were similar to responses in other lakes, suggesting indirect effects of climate change that modify nutrient inputs may affect many lakes in the future.

     
    more » « less