skip to main content


Search for: All records

Creators/Authors contains: "Pentericci, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Utilizing spectroscopic observations taken for the VIMOS Ultra-Deep Survey (VUDS), new observations from Keck/DEIMOS, and publicly available observations of large samples of star-forming galaxies, we report here on the relationship between the star-formation rate (SFR) and the local environment ( δ gal ) of galaxies in the early universe (2 <  z  < 5). Unlike what is observed at lower redshifts ( z  ≲ 2), we observe a definite, nearly monotonic increase in the average SFR with increasing galaxy overdensity over more than an order of magnitude in δ gal . The robustness of this trend is quantified by accounting for both uncertainties in our measurements and galaxy populations that are either underrepresented or not present in our sample (e.g., extremely dusty star-forming and quiescent galaxies), and we find that the trend remains significant under all circumstances. This trend appears to be primarily driven by the fractional increase of galaxies in high-density environments that are more massive in their stellar content and are forming stars at a higher rate than their less massive counterparts. We find that, even after stellar mass effects are accounted for, there remains a weak but significant SFR– δ gal trend in our sample implying that additional environmentally related processes are helping to drive this trend. We also find clear evidence that the average SFR of galaxies in the densest environments increases with increasing redshift. These results lend themselves to a picture in which massive gas-rich galaxies coalesce into proto-cluster environments at z  ≳ 3, interact with other galaxies or with a forming large-scale medium, subsequently using or losing most of their gas in the process, and begin to seed the nascent red sequence that is present in clusters at slightly lower redshifts. 
    more » « less
  2. null (Ed.)
    ABSTRACT We study the projected spatial offset between the ultraviolet continuum and Ly α emission for 65 lensed and unlensed galaxies in the Epoch of Reionization (5 ≤ z ≤ 7), the first such study at these redshifts, in order to understand the potential for these offsets to confuse estimates of the Ly α properties of galaxies observed in slit spectroscopy. While we find that ∼40 per cent of galaxies in our sample show significant projected spatial offsets ($|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$), we find a relatively modest average projected offset of $|\widetilde{\Delta }_{\rm {Ly}\alpha -\rm {UV}}|$  = 0.61 ± 0.08 proper kpc for the entire sample. A small fraction of our sample, ∼10 per cent, exhibit offsets in excess of 2 proper kpc, with offsets seen up to ∼4 proper kpc, sizes that are considerably larger than the effective radii of typical galaxies at these redshifts. An internal comparison and a comparison to studies at lower redshift yielded no significant evidence of evolution of $|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$ with redshift. In our sample, ultraviolet (UV)-bright galaxies ($\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.67$) showed offsets a factor of three greater than their fainter counterparts ($\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.10$), 0.89 ± 0.18 versus 0.27 ± 0.05 proper kpc, respectively. The presence of companion galaxies and early stage merging activity appeared to be unlikely causes of these offsets. Rather, these offsets appear consistent with a scenario in which internal anisotropic processes resulting from stellar feedback, which is stronger in UV-brighter galaxies, facilitate Ly α fluorescence and/or backscattering from nearby or outflowing gas. The reduction in the Ly α flux due to offsets was quantified. It was found that the differential loss of Ly α photons for galaxies with average offsets is not, if corrected for, a limiting factor for all but the narrowest slit widths (<0.4 arcsec). However, for the largest offsets, if they are mostly perpendicular to the slit major axis, slit losses were found to be extremely severe in cases where slit widths of ≤1 arcsec were employed, such as those planned for James Webb Space Telescope/NIRSpec observations. 
    more » « less
  3. ABSTRACT We present results from the NIRVANDELS survey on the gas-phase metallicity (Zg, tracing O/H) and stellar metallicity (Z⋆, tracing Fe/H) of 33 star-forming galaxies at redshifts 2.95 < z < 3.80. Based on a combined analysis of deep optical and near-IR spectra, tracing the rest-frame far-ultraviolet (FUV; 1200–2000 Å) and rest-frame optical (3400–5500 Å), respectively, we present the first simultaneous determination of the stellar and gas-phase mass–metallicity relationships (MZRs) at z ≃ 3.4. In both cases, we find that metallicity increases with increasing stellar mass (M⋆) and that the power-law slope at M⋆ ≲ 1010M⊙ of both MZRs scales as $Z \propto M_{\star }^{0.3}$. Comparing the stellar and gas-phase MZRs, we present direct evidence for super-solar O/Fe ratios (i.e. α-enhancement) at z > 3, finding (O/Fe) = 2.54 ± 0.38 × (O/Fe)⊙, with no clear dependence on M⋆. 
    more » « less
  4. ABSTRACT We discovered a strongly lensed (μ ≳ 40) Ly α emission at z = 6.629 (S/N ≃ 18) in the MUSE Deep Lensed Field (MDLF) targeting the Hubble Frontier Field (HFF) galaxy cluster MACS J0416. Dedicated lensing simulations imply that the Ly α emitting region necessarily crosses the caustic. The arc-like shape of the Ly α extends 3 arcsec on the observed plane and is the result of two merged multiple images, each one with a de-lensed Ly α luminosity L ≲ 2.8 × 1040 erg s−1 arising from a confined region (≲150 pc effective radius). A spatially unresolved Hubble Space Telescope(HST) counterpart is barely detected at S/N ≃ 2 after stacking the near-infrared bands, corresponding to an observed (intrinsic) magnitude m1500 ≳ 30.8 (≳35.0). The inferred rest-frame Ly α equivalent width is EW0 > 1120 if the IGM transmission is TIGM < 0.5. The low luminosities and the extremely large Ly α EW0 match the case of a Population III (Pop III) star complex made of several dozens stars (∼104 M⊙) that irradiate an H ii region crossing the caustic. While the Ly α and stellar continuum are among the faintest ever observed at this redshift, the continuum and the Ly α emissions could be affected by differential magnification, possibly biasing the EW0 estimate. The aforementioned tentative HST detection tends to favour a large EW0, making such a faint Pop III candidate a key target for the James Webb Space Telescope and Extremely Large Telescopes. 
    more » « less
  5. Abstract We constrain the distribution of spatially offset Lyman-alpha emission (Ly α) relative to rest-frame ultraviolet emission in ∼300 high redshift (3 < z < 5.5) Lyman-break galaxies (LBGs) exhibiting Ly α emission from VANDELS, a VLT/VIMOS slit-spectroscopic survey of the CANDELS Ultra Deep Survey and Chandra Deep Field South fields (≃0.2 deg2 total). Because slit spectroscopy only provides one spatial dimension, we use Bayesian inference to recover the underlying two-dimensional Ly α spatial offset distribution. We model the distribution using a two-dimensional circular Gaussian, defined by a single parameter σr,Ly α, the standard deviation expressed in polar coordinates. Over the entire redshift range of our sample (3 < z < 5.5), we find $\sigma _{r,\mathrm{Ly}\,\alpha }=1.70^{+0.09}_{-0.08}$ kpc ($68\hbox{ per cent}$ conf.), corresponding to ∼0${^{\prime\prime}_{.}}$25 at 〈z〉 = 4.5. We also find that σr,Ly α decreases significantly with redshift. Because Ly α spatial offsets can cause slit losses, the decrease in σr,Ly α with redshift can partially explain the increase in the fraction of Ly α emitters observed in the literature over this same interval, although uncertainties are still too large to reach a strong conclusion. If σr,Ly α continues to decrease into the reionization epoch, then the decrease in Ly α transmission from galaxies observed during this epoch might require an even higher neutral hydrogen fraction than what is currently inferred. Conversely, if spatial offsets increase with the increasing opacity of the intergalactic medium, slit losses may explain some of the drop in Ly α transmission observed at z > 6. Spatially resolved observations of Ly α and UV continuum at 6 < z < 8 are needed to settle the issue. 
    more » « less