skip to main content


Search for: All records

Creators/Authors contains: "Pinckney, Donald"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. This is the artifact for: A Large Scale Analysis of Semantic Versioning in NPM.

    The artifact contains:

    • A full scrape of all metadata from NPM (package / version information, dependencies, etc.) as of October 31, 2022.
    • A copy of our code, which includes the software for scraping metadata and package tarball (code) data, as well as all analysis scripts that are needed to replicate the figures from the paper.
     
    more » « less
  4. Michael Pradel (Ed.)
    Large language models have demonstrated the ability to generate both natural language and programming language text. Although contemporary code generation models are trained on corpora with several programming languages, they are tested using benchmarks that are typically monolingual. The most widely used code generation benchmarks only target Python, so there is little quantitative evidence of how code generation models perform on other programming languages. We propose MultiPL-E, a system for translating unit test-driven code generation benchmarks to new languages. We create the first massively multilingual code generation benchmark by using MultiPL-E to translate two popular Python code generation benchmarks to 18 additional programming languages. We use MultiPL-E to extend the HumanEval benchmark and MBPP benchmark to 18 languages that encompass a range of programming paradigms and popularity. Using these new parallel benchmarks, we evaluate the multi-language performance of three state-of-the-art code generation models: Codex, CodeGen and InCoder. We find that Codex matches or even exceeds its performance on Python for several other languages. The range of programming languages represented in MultiPL-E allow us to explore the impact of language frequency and language features on model performance. Finally, the MultiPL-E approach of compiling code generation benchmarks to new programming languages is both scalable and extensible, making it straightforward to evaluate new models, benchmarks, and languages. 
    more » « less
  5. null (Ed.)
    WebAssembly is designed to be an alternative to JavaScript that is a safe, portable, and efficient compilation target for a variety of languages. The performance of high-level languages depends not only on the underlying performance of WebAssembly, but also on the quality of the generated WebAssembly code. In this paper, we identify several features of high-level languages that current approaches can only compile to WebAssembly by generating complex and inefficient code. We argue that these problems could be addressed if WebAssembly natively supported first-class continuations. We then present Wasm/k, which extends WebAssembly with delimited continuations. Wasm/k introduces no new value types, and thus does not require significant changes to the WebAssembly type system (validation). Wasm/k is safe, even in the presence of foreign function calls (e.g., to and from JavaScript). Finally, Wasm/k is amenable to efficient implementation: we implement Wasm/k as a local change to Wasmtime, an existing WebAssembly JIT. We evaluate Wasm/k by implementing C/k, which adds delimited continuations to C/C++. C/k uses Emscripten and its implementation serves as a case study on how to use Wasm/k in a compiler that targets WebAssembly. We present several case studies using C/k, and show that on implementing green threads, it can outperform the state-of-the-art approach Asyncify with an 18% improvement in performance and a 30% improvement in code size. 
    more » « less