skip to main content


Search for: All records

Creators/Authors contains: "Pinsonneault, Marc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We examine the properties of ∼50 000 rotational variables from the ASAS-SN survey using distances, stellar properties, and probes of binarity from Gaia DR3 and the SDSS APOGEE survey. They have higher amplitudes and span a broader period range than previously studied Kepler rotators. We find they divide into three groups of main sequence stars (MS1, MS2s, MS2b) and four of giants (G1/3, G2, G4s, and G4b). MS1 stars are slowly rotating (10–30 d), likely single stars with a limited range of temperatures. MS2s stars are more rapidly rotating (days) single stars spanning the lower main sequence up to the Kraft break. There is a clear period gap (or minimum) between MS1 and MS2s, similar to that seen for lower temperatures in the Kepler samples. MS2b stars are tidally locked binaries with periods of days. G1/3 stars are heavily spotted, tidally locked RS CVn stars with periods of 10s of days. G2 stars are less luminous, heavily spotted, tidally locked sub-subgiants with periods of ∼10 d. G4s stars have intermediate luminosities to G1/3 and G2, slow rotation periods (approaching 100 d), and are almost certainly all merger remnants. G4b stars have similar rotation periods and luminosities to G4s, but consist of sub-synchronously rotating binaries. We see no difference in indicators for the presence of very wide binary companions between any of these groups and control samples of photometric twin stars built for each group.

     
    more » « less
  2. ABSTRACT

    Although stellar radii from asteroseismic scaling relations agree at the per cent level with independent estimates for main sequence and most first-ascent red giant branch (RGB) stars, the scaling relations over-predict radii at the tens of per cent level for the most luminous stars ($R \gtrsim 30 \, \mathrm{R}_{\odot }$). These evolved stars have significantly superadiabatic envelopes, and the extent of these regions increase with increasing radius. However, adiabaticity is assumed in the theoretical derivation of the scaling relations as well as in corrections to the large frequency separation. Here, we show that a part of the scaling relation radius inflation may arise from this assumption of adiabaticity. With a new reduction of Kepler asteroseismic data, we find that scaling relation radii and Gaia radii agree to within at least 2 per cent for stars with $R \lesssim 30\, \mathrm{R}_{\odot }$, when treated under the adiabatic assumption. The accuracy of scaling relation radii for stars with $50\, \mathrm{R}_{\odot }\lesssim R \lesssim 100\, \mathrm{R}_{\odot }$, however, is not better than $10~{{\ \rm per \, cent}}-15~{{\ \rm per \, cent}}$ using adiabatic large frequency separation corrections. We find that up to one third of this disagreement for stars with $R \approx 100\, \mathrm{R}_{\odot }$ could be caused by the adiabatic assumption, and that this adiabatic error increases with radius to reach 10 per cent at the tip of the RGB. We demonstrate that, unlike the solar case, the superadiabatic gradient remains large very deep in luminous stars. A large fraction of the acoustic cavity is also in the optically thin atmosphere. The observed discrepancies may therefore reflect the simplified treatment of convection and atmospheres.

     
    more » « less
  3. Abstract

    Differential rotation is thought to be responsible for the dynamo process in stars like our Sun, driving magnetic activity and starspots. We report that starspot measurements in the Praesepe open cluster are strongly enhanced only for stars that depart from standard models of rotational evolution. A decoupling of the spin-down history between the core and envelope explains both the activity and rotation anomalies: surface rotational evolution is stalled by interior angular momentum redistribution, and the resultant radial shears enhance starspot activity. These anomalies provide evidence for an evolving front of shear-enhanced activity affecting the magnetic and rotational evolution of cool stars and the high-energy environments of their planetary companions for hundreds of millions to billions of years on the main sequence.

     
    more » « less
  4. ABSTRACT

    We measure star-spot filling fractions for 240 stars in the Pleiades and M67 open star clusters using APOGEE high-resolution H-band spectra. For this work, we developed a modified spectroscopic pipeline which solves for star-spot filling fraction and star-spot temperature contrast. We exclude binary stars, finding that the large majority of binaries in these clusters (80 per cent) can be identified from Gaia DR3 and APOGEE criteria – important for field star applications. Our data agree well with independent activity proxies, indicating that this technique recovers real star-spot signals. In the Pleiades, filling fractions saturate at a mean level of 0.248 ± 0.005 for active stars with a decline at slower rotation; we present fitting functions as a function of Rossby number. In M67, we recover low mean filling fractions of 0.030 ± 0.008 and 0.003 ± 0.002 for main sequence GK stars and evolved red giants, respectively, confirming that the technique does not produce spurious spot signals in inactive stars. Star-spots also modify the derived spectroscopic effective temperatures and convective overturn time-scales. Effective temperatures for active stars are offset from inactive ones by −109 ± 11 K, in agreement with the Pecaut & Mamajek empirical scale. Star-spot filling fractions at the level measured in active stars changes their inferred overturn time-scale, which biases the derived threshold for saturation. Finally, we identify a population of stars statistically discrepant from mean activity–Rossby relations and present evidence that these are genuine departures from a Rossby scaling. Our technique is applicable to the full APOGEE catalogue, with broad applications to stellar, galactic, and exoplanetary astrophysics.

     
    more » « less
  5. Abstract Known sources of lithium (Li) in the universe include the Big Bang, novae, asymptotic giant branch stars, and cosmic-ray spallation. During their longer-lived evolutionary phases, stars are not expected to add to the Li budget of the Galaxy, but to largely deplete it. In this context, recent analyses of Li data from GALAH and LAMOST for field red clump (RC) stars have concluded that there is the need for a new production channel of Li, ubiquitous among low-mass stars, and that would be triggered on the upper red giant branch (RGB) or at helium ignition. This is distinct from the Li-rich giant problem and reflects bulk RC star properties. We provide an analysis of the GALAH Li data that accounts for the distribution of progenitor masses of field RC stars observed today. Such progenitors are different than today’s field RGB stars. Using standard post-main-sequence stellar evolution, we show that the distribution of Li among field RC giants as observed by GALAH is consistent with standard model predictions, and does not require new Li production mechanisms. Our model predicts a large fraction of very low Li abundances from low-mass progenitors, with higher abundances from higher mass ones. Moreover, there should be a large number of upper limits for RC giants, and higher abundances should correspond to higher masses. The most recent GALAH data indeed confirm the presence of large numbers of upper limits, and a much lower mean Li abundance in RC stars, in concordance with our interpretation. 
    more » « less
  6. Abstract We present a spectroscopic analysis of a sample of 48 M-dwarf stars (0.2 M ⊙ < M < 0.6 M ⊙ ) from the Hyades open cluster using high-resolution H -band spectra from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Our methodology adopts spectrum synthesis with LTE MARCS model atmospheres, along with the APOGEE Data Release 17 line list, to determine effective temperatures, surface gravities, metallicities, and projected rotational velocities. The median metallicity obtained for the Hyades M dwarfs is [M/H] = 0.09 ± 0.03 dex, indicating a small internal uncertainty and good agreement with optical results for Hyades red giants. Overall, the median radii are larger than predicted by stellar models by 1.6% ± 2.3% and 2.4% ± 2.3%, relative to a MIST and DARTMOUTH isochrone, respectively. We emphasize, however, that these isochrones are different, and the fractional radius inflation for the fully and partially convective regimes have distinct behaviors depending on the isochrone. Using a MIST isochrone there is no evidence of radius inflation for the fully convective stars, while for the partially convective M dwarfs the radii are inflated by 2.7% ± 2.1%, which is in agreement with predictions from models that include magnetic fields. For the partially convective stars, rapid rotators present on average higher inflation levels than slow rotators. The comparison with SPOTS isochrone models indicates that the derived M-dwarf radii can be explained by accounting for stellar spots in the photosphere of the stars, with 76% of the studied M dwarfs having up to 20% spot coverage, and the most inflated stars with ∼20%–40% spot coverage. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  7. Abstract

    The bright starλSer hosts a hot Neptune with a minimum mass of 13.6Mand a 15.5 day orbit. It also appears to be a solar analog, with a mean rotation period of 25.8 days and surface differential rotation very similar to the Sun. We aim to characterize the fundamental properties of this system and constrain the evolutionary pathway that led to its present configuration. We detect solar-like oscillations in time series photometry from the Transiting Exoplanet Survey Satellite, and we derive precise asteroseismic properties from detailed modeling. We obtain new spectropolarimetric data, and we use them to reconstruct the large-scale magnetic field morphology. We reanalyze the complete time series of chromospheric activity measurements from the Mount Wilson Observatory, and we present new X-ray and ultraviolet observations from the Chandra and Hubble space telescopes. Finally, we use the updated observational constraints to assess the rotational history of the star and estimate the wind braking torque. We conclude that the remaining uncertainty on the stellar age currently prevents an unambiguous interpretation of the properties ofλSer, and that the rate of angular momentum loss appears to be higher than for other stars with a similar Rossby number. Future asteroseismic observations may help to improve the precision of the stellar age.

     
    more » « less
  8. Abstract Individual chemical abundances for 14 elements (C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are derived for a sample of M dwarfs using high-resolution, near-infrared H -band spectra from the Sloan Digital Sky Survey-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The quantitative analysis included synthetic spectra computed with 1D LTE plane-parallel MARCS models using the APOGEE Data Release 17 line list to determine chemical abundances. The sample consists of 11 M dwarfs in binary systems with warmer FGK dwarf primaries and 10 measured interferometric angular diameters. To minimize atomic diffusion effects, [X/Fe] ratios are used to compare M dwarfs in binary systems and literature results for their warmer primary stars, indicating good agreement (<0.08 dex) for all studied elements. The mean abundance difference in primaries minus this work’s M dwarfs is −0.05 ± 0.03 dex. It indicates that M dwarfs in binary systems are a reliable way to calibrate empirical relationships. A comparison with abundance, effective temperature, and surface gravity results from the APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) Data Release 16 finds a systematic offset of [M/H], T eff , log g = +0.21 dex, −50 K, and 0.30 dex, respectively, although ASPCAP [X/Fe] ratios are generally consistent with this study. The metallicities of the M dwarfs cover the range of [Fe/H] = −0.9 to +0.4 and are used to investigate Galactic chemical evolution via trends of [X/Fe] as a function of [Fe/H]. The behavior of the various elemental abundances [X/Fe] versus [Fe/H] agrees well with the corresponding trends derived from warmer FGK dwarfs, demonstrating that the APOGEE spectra can be used to examine Galactic chemical evolution using large samples of selected M dwarfs. 
    more » « less
  9. ABSTRACT

    We measure rotational broadening in spectra taken by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to characterize the relationship between stellar multiplicity and rotation. We create a sample of 2786 giants and 24 496 dwarfs with stellar parameters and multiple radial velocities from the APOGEE pipeline, projected rotation speeds vsin i determined from our own pipeline, and distances, masses, and ages measured by Sanders & Das. We use the statistical distribution of the maximum shift in the radial velocities, ΔRVmax, as a proxy for the close binary fraction to explore the interplay between stellar evolution, rotation, and multiplicity. Assuming that the minimum orbital period allowed is the critical period for Roche Lobe overflow and rotational synchronization, we calculate theoretical upper limits on expected vsin i and ΔRVmax values. These expectations agree with the positive correlation between the maximum ΔRVmax and vsin i values observed in our sample as a function of log(g). We find that the fast rotators in our sample have a high occurrence of short-period [log(P/d) ≲ 4] companions. We also find that old, rapidly rotating main-sequence stars have larger completeness-corrected close binary fractions than their younger peers. Furthermore, rapidly rotating stars with large ΔRVmax consistently show differences of 1–10 Gyr between the predicted gyrochronological and measured isochronal ages. These results point towards a link between rapid rotation and close binarity through tidal interactions. We conclude that stellar rotation is strongly correlated with stellar multiplicity in the field, and caution should be taken in the application of gyrochronology relations to cool stars.

     
    more » « less