skip to main content


Search for: All records

Creators/Authors contains: "Plez, Bertrand"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Physically realistic models of stellar spectra are needed in a variety of astronomical studies, from the analysis of fundamental stellar parameters, to studies of exoplanets and stellar populations in galaxies. Here we present a new version of the widely used radiative transfer code Turbospectrum, which we update so that it is able to perform spectrum synthesis for lines of multiple chemical elements in non-local thermodynamic equilibrium (NLTE). We use the code in the analysis of metallicites and abundances of the Gaia FGK benchmark stars, using 1D MARCS atmospheric models and the averages of 3D radiation-hydrodynamics simulations of stellar surface convection. We show that the new more physically realistic models offer a better description of the observed data, and we make the program and the associated microphysics data publicly available, including grids of NLTE departure coefficients for H, O, Na, Mg, Si, Ca, Ti, Mn, Fe, Co, Ni, Sr, and Ba. 
    more » « less
  2. ABSTRACT The centre of the Milky Way contains stellar populations spanning a range in age and metallicity, with a recent star formation burst producing young and massive stars. Chemical abundances in the most luminous stellar member of the nuclear star cluster (NSC), IRS 7, are presented for 19F, 12C, 13C, 14N, 16O, 17O, and Fe from a local thermodynamic equilibrium analysis based on spherical modelling and radiative transfer with a 25-M⊙ model atmosphere, whose chemistry was tailored to the derived photospheric abundances. We find IRS 7 to be depleted heavily in both 12C (∼–0.8 dex) and 16O (∼–0.4 dex), while exhibiting an extremely enhanced 14N abundance (∼+1.1 dex), which are isotopic signatures of the deep mixing of CNO-cycled material to the stellar surface. The 19F abundance is also heavily depleted by ∼1 dex relative to the baseline fluorine of the NSC, providing evidence that fluorine along with carbon constrain the nature of the deep mixing in this very luminous supergiant. The abundances of the minor isotopes 13C and 17O are also derived, with ratios of 12C/13C ∼ 5.3 and 16O/17O ∼ 525. The derived abundances for IRS 7, in conjunction with previous abundance results for massive stars in the NSC, are compared with rotating and non-rotating models of massive stars and it is found that the IRS 7 abundances overall follow the behaviour predicted by stellar models. The depleted fluorine abundance in IRS 7 illustrates, for the first time, the potential of using the 19F abundance as a mixing probe in luminous red giants. 
    more » « less
  3. null (Ed.)
  4. Abstract We present Non-Local Thermodynamic Equilibrium (Non-LTE) abundance corrections for Mg, Ca, and Fe in 12 ultra metal-poor (UMP) stars ([Fe/H] < −4.00). We show that they increase in absolute value toward the lower metallicity up to 0.45 dex for Mg, 0.30 dex for Ca, and 1.00 dex for Fe. This represents a first step toward a full Non-LTE analysis of chemical species in the UMP stars that will enable us to put useful constraints on the properties of the “First” stars. 
    more » « less