skip to main content


Search for: All records

Creators/Authors contains: "Pojmanski, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    ABSTRACT The All-Sky Automated Survey for Supernovae provides long baseline (∼4 yr) V-band light curves for sources brighter than V≲ 17 mag across the whole sky. We produced V-band light curves for a total of ∼61.5 million sources and systematically searched these sources for variability. We identified ∼426 000 variables, including ∼219 000 new discoveries. Most (${\sim }74{ per\ cent}$) of our discoveries are in the Southern hemisphere. Here, we use spectroscopic information from LAMOST, GALAH, RAVE, and APOGEE to study the physical and chemical properties of these variables. We find that metal-poor eclipsing binaries have orbital periods that are shorter than metal-rich systems at fixed temperature. We identified rotational variables on the main-sequence, red giant branch, and the red clump. A substantial fraction (${\gtrsim }80{ per\ cent}$) of the rotating giants have large $v$rot or large near-ultraviolet excesses also indicative of fast rotation. The rotational variables have unusual abundances suggestive of analysis problems. Semiregular variables tend to be lower metallicity ($\rm [Fe/H]{\sim }-0.5$) than most giant stars. We find that the APOGEE DR16 temperatures of oxygen-rich semiregular variables are strongly correlated with the WRP − WJK colour index for $\rm T_{eff}\lesssim 3800$ K. Using abundance measurements from APOGEE DR16, we find evidence for Mg and N enrichment in the semiregular variables. We find that the Aluminum abundances of the semiregular variables are strongly correlated with the pulsation period, where the variables with $\rm P\gtrsim 60$ d are significantly depleted in Al. 
    more » « less
  2. ABSTRACT We characterize ${\sim } 71\, 200$ W Ursae Majoris (UMa) type (EW) contact binaries, including ${\sim } 12\, 600$ new discoveries, using All-Sky Automated Survey for SuperNovae (ASAN-SN)V-band all-sky light curves along with archival data from Gaia, 2MASS, AllWISE, LAMOST, GALAH, RAVE, and APOGEE. There is a clean break in the EW period–luminosity relation at $\rm \log (\it P/{\rm d})\,{\simeq }\,{\rm -0.30}$, separating the longer period, early-type EW binaries from the shorter period, late-type systems. The two populations are even more cleanly separated in the space of period and effective temperature, by $T_{\rm eff}=6710\,{\rm K}-1760\,{\rm K}\, \log (P/0.5\,{\rm d})$. Early-type and late-type EW binaries follow opposite trends in Teff with orbital period. For longer periods, early-type EW binaries are cooler, while late-type systems are hotter. We derive period–luminosity relationships in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands for the late-type and early-type EW binaries separated by both period and effective temperature, and by period alone. The dichotomy of contact binaries is almost certainly related to the Kraft break and the related changes in envelope structure, winds, and angular momentum loss. 
    more » « less
  3. ABSTRACT We explore the synergy between photometric and spectroscopic surveys by searching for periodic variable stars among the targets observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) using photometry from the All-Sky Automated Survey for Supernovae (ASAS-SN). We identified 1924 periodic variables among more than $258\, 000$ APOGEE targets; 465 are new discoveries. We homogeneously classified 430 eclipsing and ellipsoidal binaries, 139 classical pulsators (Cepheids, RR Lyrae, and δ Scuti), 719 long-period variables (pulsating red giants), and 636 rotational variables. The search was performed using both visual inspection and machine learning techniques. The light curves were also modelled with the damped random walk stochastic process. We find that the median [Fe/H] of variable objects is lower by 0.3 dex than that of the overall APOGEE sample. Eclipsing binaries and ellipsoidal variables are shifted to a lower median [Fe/H] by 0.2 dex. Eclipsing binaries and rotational variables exhibit significantly broader spectral lines than the rest of the sample. We make ASAS-SN light curves for all the APOGEE stars publicly available and provide parameters for the variable objects. 
    more » « less
  4. ABSTRACT

    The All-Sky Automated Survey for Supernovae (ASAS-SN) provides long baseline (∼4 yr) light curves for sources brighter than V ≲ 17 mag across the whole sky. As part of our effort to characterize the variability of all the stellar sources visible in ASAS-SN, we have produced ∼30.1 million V-band light curves for sources in the Southern hemisphere using the APASS DR9 (AAVSO Photometric All-Sky Survey Data Release) catalogue as our input source list. We have systematically searched these sources for variability using a pipeline based on random forest classifiers. We have identified ${\sim } 220\, 000$ variables, including ${\sim } 88\, 300$ new discoveries. In particular, we have discovered ${\sim }48\, 000$ red pulsating variables, ${\sim }23\, 000$ eclipsing binaries, ∼2200 δ-Scuti variables, and ${\sim }10\, 200$ rotational variables. The light curves and characteristics of the variables are all available through the ASAS-SN variable stars data base (https://asas-sn.osu.edu/variables). The pre-computed ASAS-SN V-band light curves for all the ∼30.1 million sources are available through the ASAS-SN photometry data base (https://asas-sn.osu.edu/photometry). This effort will be extended to provide ASAS-SN light curves for sources in the Northern hemisphere and for V ≲ 17 mag sources across the whole sky that are not included in APASS DR9.

     
    more » « less