skip to main content


Search for: All records

Creators/Authors contains: "Pospisilova, Veronika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter D p < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and β-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m −3 in real time. This was until now difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semi-continuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level. 
    more » « less
  2. null (Ed.)
  3. Abstract. New particle formation (NPF) is a significant source of atmosphericparticles, affecting climate and air quality. Understanding the mechanismsinvolved in urban aerosols is important to develop effective mitigationstrategies. However, NPF rates reported in the polluted boundary layer spanmore than 4 orders of magnitude, and the reasons behind this variability are the subject of intense scientific debate. Multiple atmospheric vapours have beenpostulated to participate in NPF, including sulfuric acid, ammonia, aminesand organics, but their relative roles remain unclear. We investigated NPFin the CLOUD chamber using mixtures of anthropogenic vapours that simulatepolluted boundary layer conditions. We demonstrate that NPF in pollutedenvironments is largely driven by the formation of sulfuric acid–baseclusters, stabilized by the presence of amines, high ammonia concentrationsand lower temperatures. Aromatic oxidation products, despite their extremelylow volatility, play a minor role in NPF in the chosen urban environment butcan be important for particle growth and hence for the survival of newlyformed particles. Our measurements quantitatively account for NPF in highlydiverse urban environments and explain its large observed variability. Suchquantitative information obtained under controlled laboratory conditionswill help the interpretation of future ambient observations of NPF rates inpolluted atmospheres. 
    more » « less
  4. null (Ed.)
    Abstract. Nucleation of atmospheric vapours produces more than half of global cloudcondensation nuclei and so has an important influence on climate. Recentstudies show that monoterpene (C10H16) oxidation yieldshighly oxygenated products that can nucleate with or without sulfuric acid.Monoterpenes are emitted mainly by trees, frequently together with isoprene(C5H8), which has the highest global emission of all organicvapours. Previous studies have shown that isoprene suppresses new-particleformation from monoterpenes, but the cause of this suppression is underdebate. Here, in experiments performed under atmospheric conditions in theCERN CLOUD chamber, we show that isoprene reduces the yield ofhighly oxygenated dimers with 19 or 20 carbon atoms – which drive particlenucleation and early growth – while increasing the production of dimers with14 or 15 carbon atoms. The dimers (termed C20 and C15,respectively) are produced by termination reactions between pairs of peroxyradicals (RO2⚫) arising from monoterpenes or isoprene.Compared with pure monoterpene conditions, isoprene reduces nucleation ratesat 1.7 nm (depending on the isoprene ∕ monoterpene ratio) and approximatelyhalves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm,C15 dimers contribute to secondary organic aerosol, and the growth ratesare unaffected by isoprene. We further show that increased hydroxyl radical(OH⚫) reduces particle formation in our chemical system ratherthan enhances it as previously proposed, since it increases isoprene-derivedRO2⚫ radicals that reduce C20 formation.RO2⚫ termination emerges as the critical step that determinesthe highly oxygenated organic molecule (HOM) distribution and the corresponding nucleation capability. Speciesthat reduce the C20 yield, such as NO, HO2 and as we showisoprene, can thus effectively reduce biogenic nucleation and early growth.Therefore the formation rate of organic aerosol in a particular region ofthe atmosphere under study will vary according to the precise ambientconditions. 
    more » « less
  5. A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NO x ) and sulfur oxides (SO x ) from fossil fuel combustion, as well as ammonia (NH 3 ) from livestock and fertilizers. Here, we show how NO x suppresses particle formation, while HOMs, sulfuric acid, and NH 3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system. 
    more » « less