skip to main content


Search for: All records

Creators/Authors contains: "Pouyat, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cycling of carbon (C), nitrogen (N), calcium (Ca), phosphorus (P), and sulfur (S) is an important ecosystem service that forest soils provide. Humans influence these biogeochemical processes through the deposition of atmospheric pollutants and site disturbances. One way to study these potential anthropogenic trajectories is through long-term monitoring in association with human-caused environmental gradients such as urban-rural gradients. The objective of this study was to characterize changes in surface soil chemistry of urban, suburban and rural forest patches in the Baltimore Metropolitan area. Soil composite samples (0–10 cm) were analyzed for macro- and micronutrients, pH, and C. A total of 12 sites in forest patches dominated by white oak ( Quercus alba ) and tulip poplar ( Liriodendron tulipifera ) were established in 2001, and resampled in 2018. We hypothesized that after almost two decades (1) concentrations of N, Ca, and P, as well as soil pH would be higher, especially in urban forest patches due to local deposition; (2) S levels would be lower due to decreased regional atmospheric deposition and; (3) total soil C would increase overall, but the rate of increase would be higher in the urban end of the gradient due to increased NPP. Overall, means of Ca concentration, pH, and C:N ratios significantly changed from 2001 to 2018. Calcium increased by 35% from 622 to 844 mg kg –1 , pH increased from 4.1 to 4.5, and C:N ratios decreased from 17.8 to 16.7. Along the gradient, Ca, N, P, and S were statistically significant with Ca concentration higher in the urban sites; S and N higher in the suburban sites; and P lower in the urban sites. Confounding factors, such as different geologic parent material may have affected these results. However, despite the unique site conditions, patterns of surface soil chemistry in space and time implies that local and regional factors jointly affect soil development in these forest patches. The increase in pH and Ca is especially notable because other long-term studies demonstrated changes in the opposite direction. 
    more » « less
  2. Soil nitrogen (N) is an important driver of plant productivity and ecosystem functioning; consequently, it is critical to understand its spatial variability from local-to-global scales. Here we provide a quantitative assessment of the three-dimensional spatial distribution of soil N across the conterminous United States (CONUS) using a digital soil mapping (DSM) approach. We used a random forest-regression kriging algorithm to predict soil N concentrations and associated uncertainty across six soil depths (0-5, 5-15, 15-30, 30-60, 60-100, 100-200 cm) at 5 km spatial grids. Across CONUS, there is a strong spatial dependence of soil N, where soil N concentrations decrease but uncertainty increases with soil depth. Soil N was higher in Pacific Northwest, Northeast, and Great Lakes National Ecological Observatory Network (NEON) ecoclimatic domains. Model uncertainty was higher in Atlantic Neotropical, Southern Rockies/Colorado Plateau and Southeast NEON domains. We also compared our soil N predictions with satellite-derived gross primary production (GPP) and forest biomass from the National Biomass and Carbon Dataset. Finally, we used uncertainty information to propose optimized locations for designing future soil surveys and found that the Atlantic Neotropical, Pacific Northwest, Pacific Southwest, and Appalachian/Cumberland Plateau NEON domains may require larger survey efforts. We highlight the need to increase knowledge of biophysical factors regulating soil processes at deeper depths to better characterize the three-dimensional space of soils. Our results provide a national benchmark regarding the spatial variability and uncertainty of soil N and reveal areas in need of a better representation.


    This dataset includes all covariates used for modeling soil Nitrogen, the training data, and the modeling output. The output represents raster files at 5km resolution of soil N at different depths and associated model uncertainty.


    Main reference:

    Smith EM, Guevara M, Tarin T, Pouyat R, Vargas R. Spatial variability and uncertainty of soil nitrogen across the conterminous United States (in review). Ecosphere.

     
    more » « less
  3. null (Ed.)
    Many of the world’s major cities have implemented tree planting programs based on assumed environmental and social benefits of urban forests. Recent studies have increasingly tested these assumptions and provide empirical evidence for the contributions of tree planting programs, as well as their feasibility and limits, for solving or mitigating urban environmental and social issues. We propose that current evidence supports local cooling, stormwater absorption, and health benefits of urban trees for local residents. However, the potential for urban trees to appreciably mitigate greenhouse gas emissions and air pollution over a wide array of sites and environmental conditions is limited. Consequently, urban trees appear to be more promising for climate and pollution adaptation strategies than mitigation strategies. In large part, this is due to space constraints limiting the extent of urban tree canopies relative to the current magnitude of emissions. The most promising environmental and health impacts of urban trees are those that can be realized with well-stewarded tree planting and localized design interventions at site to municipal scales. Tree planting at these scales has documented benefits on local climate and health, which can be maximized through targeted site design followed by monitoring, adaptive management, and studies of long-term eco-evolutionary dynamics. 
    more » « less
  4. null (Ed.)