skip to main content


Search for: All records

Creators/Authors contains: "Prada, F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a measurement of the Hubble ConstantH0using the gravitational wave event GW190412, an asymmetric binary black hole merger detected by LIGO/Virgo, as a dark standard siren. This event does not have an electromagnetic counterpart, so we use the statistical standard siren method and marginalize over potential host galaxies from the Dark Energy Spectroscopic Instrument (DESI) survey. GW190412 is well-localized to 12 deg2(90% credible interval), so it is promising for a dark siren analysis. The dark siren value forH0=85.433.9+29.1km s−1 Mpc−1, with a posterior shape that is consistent with redshift overdensities. When combined with the bright standard siren measurement from GW170817 we recoverH0=77.965.03+23.0km s−1 Mpc−1, consistent with both early and late-time Universe measurements ofH0. This work represents the first standard siren analysis performed with DESI data, and includes the most complete spectroscopic sample used in a dark siren analysis to date.

     
    more » « less
  2. ABSTRACT

    The 1D power spectrum P1D of the Ly α forest provides important information about cosmological and astrophysical parameters, including constraints on warm dark matter models, the sum of the masses of the three neutrino species, and the thermal state of the intergalactic medium. We present the first measurement of P1D with the quadratic maximum likelihood estimator (QMLE) from the Dark Energy Spectroscopic Instrument (DESI) survey early data sample. This early sample of 54 600 quasars is already comparable in size to the largest previous studies, and we conduct a thorough investigation of numerous instrumental and analysis systematic errors to evaluate their impact on DESI data with QMLE. We demonstrate the excellent performance of the spectroscopic pipeline noise estimation and the impressive accuracy of the spectrograph resolution matrix with 2D image simulations of raw DESI images that we processed with the DESI spectroscopic pipeline. We also study metal line contamination and noise calibration systematics with quasar spectra on the red side of the Ly α emission line. In a companion paper, we present a similar analysis based on the Fast Fourier Transform estimate of the power spectrum. We conclude with a comparison of these two approaches and discuss the key sources of systematic error that we need to address with the upcoming DESI Year 1 analysis.

     
    more » « less
  3. ABSTRACT

    Combining different observational probes, such as galaxy clustering and weak lensing, is a promising technique for unveiling the physics of the Universe with upcoming dark energy experiments. The galaxy redshift sample from the Dark Energy Spectroscopic Instrument (DESI) will have a significant overlap with major ongoing imaging surveys specifically designed for weak lensing measurements: the Kilo-Degree Survey (KiDS), the Dark Energy Survey (DES), and the Hyper Suprime-Cam (HSC) survey. In this work, we analyse simulated redshift and lensing catalogues to establish a new strategy for combining high-quality cosmological imaging and spectroscopic data, in view of the first-year data assembly analysis of DESI. In a test case fitting for a reduced parameter set, we employ an optimal data compression scheme able to identify those aspects of the data that are most sensitive to cosmological information and amplify them with respect to other aspects of the data. We find this optimal compression approach is able to preserve all the information related to the growth of structures.

     
    more » « less
  4. Abstract

    We introduce the DESI LOW-ZSecondary Target Survey, which combines the wide-area capabilities of the Dark Energy Spectroscopic Instrument (DESI) with an efficient, low-redshift target selection method. Our selection consists of a set of color and surface brightness cuts, combined with modern machine-learning methods, to target low-redshift dwarf galaxies (z< 0.03) between 19 <r< 21 with high completeness. We employ a convolutional neural network (CNN) to select high-priority targets. The LOW-Zsurvey has already obtained over 22,000 redshifts of dwarf galaxies (M*< 109M), comparable to the number of dwarf galaxies discovered in the Sloan Digital Sky Survey DR8 and GAMA. As a spare fiber survey, LOW-Zcurrently receives fiber allocation for just ∼50% of its targets. However, we estimate that our selection is highly complete: for galaxies atz< 0.03 within our magnitude limits, we achieve better than 95% completeness with ∼1% efficiency using catalog-level photometric cuts. We also demonstrate that our CNN selectionsz< 0.03 galaxies from the photometric cuts subsample at least 10 times more efficiently while maintaining high completeness. The full 5 yr DESI program will expand the LOW-Zsample, densely mapping the low-redshift Universe, providing an unprecedented sample of dwarf galaxies, and providing critical information about how to pursue effective and efficient low-redshift surveys.

     
    more » « less
  5. Abstract

    The Dark Energy Spectroscopic Instrument (DESI) is carrying out a five-year survey that aims to measure the redshifts of tens of millions of galaxies and quasars, including 8 million luminous red galaxies (LRGs) in the redshift range 0.4 <z≲ 1.0. Here we present the selection of the DESI LRG sample and assess its spectroscopic performance using data from Survey Validation (SV) and the first two months of the Main Survey. The DESI LRG sample, selected usingg,r,z, andW1 photometry from the DESI Legacy Imaging Surveys, is highly robust against imaging systematics. The sample has a target density of 605 deg−2and a comoving number density of 5 × 10−4h3Mpc−3in 0.4 <z< 0.8; this is a significantly higher density than previous LRG surveys (such as SDSS, BOSS, and eBOSS) while also extending toz∼ 1. After applying a bright star veto mask developed for the sample, 98.9% of the observed LRG targets yield confident redshifts (with a catastrophic failure rate of 0.2% in the confident redshifts), and only 0.5% of the LRG targets are stellar contamination. The LRG redshift efficiency varies with source brightness and effective exposure time, and we present a simple model that accurately characterizes this dependence. In the appendices, we describe the extended LRG samples observed during SV.

     
    more » « less
  6. Abstract

    We present Dark Energy Spectroscopic Instrument (DESI) observations of the inner halo of M31, which reveal the kinematics of a recent merger—a galactic immigration event—in exquisite detail. Of the 11,416 sources studied in 3.75 hr of on-sky exposure time, 7438 are M31 sources with well-measured radial velocities. The observations reveal intricate coherent kinematic structure in the positions and velocities of individual stars: streams, wedges, and chevrons. While hints of coherent structures have been previously detected in M31, this is the first time they have been seen with such detail and clarity in a galaxy beyond the Milky Way. We find clear kinematic evidence for shell structures in the Giant Stellar Stream, the Northeast Shelf, and Western Shelf regions. The kinematics are remarkably similar to the predictions of dynamical models constructed to explain the spatial morphology of the inner halo. The results are consistent with the interpretation that much of the substructure in the inner halo of M31 is produced by a single galactic immigration event 1–2 Gyr ago. Significant numbers of metal-rich stars ([Fe/H] > − 0.5) are present in all of the detected substructures, suggesting that the immigrating galaxy had an extended star formation history. We also investigate the ability of the shells and Giant Stellar Stream to constrain the gravitational potential of M31, and estimate the mass within a projected radius of 125 kpc to belog10MNFW(<125kpc)/M=11.800.10+0.12. The results herald a new era in our ability to study stars on a galactic scale and the immigration histories of galaxies.

     
    more » « less
  7. Abstract

    A key component of the Dark Energy Spectroscopic Instrument (DESI) survey validation (SV) is a detailed visual inspection (VI) of the optical spectroscopic data to quantify key survey metrics. In this paper we present results from VI of the quasar survey using deep coadded SV spectra. We show that the majority (≈70%) of the main-survey targets are spectroscopically confirmed as quasars, with ≈16% galaxies, ≈6% stars, and ≈8% low-quality spectra lacking reliable features. A nonnegligible fraction of the quasars are misidentified by the standard spectroscopic pipeline, but we show that the majority can be recovered using post-pipeline “afterburner” quasar-identification approaches. We combine these “afterburners” with our standard pipeline to create a modified pipeline to increase the overall quasar yield. At the depth of the main DESI survey, both pipelines achieve a good-redshift purity (reliable redshifts measured within 3000 km s−1) of ≈99%; however, the modified pipeline recovers ≈94% of the visually inspected quasars, as compared to ≈86% from the standard pipeline. We demonstrate that both pipelines achieve a median redshift precision and accuracy of ≈100 km s−1and ≈70 km s−1, respectively. We constructed composite spectra to investigate why some quasars are missed by the standard pipeline and find that they are more host-galaxy dominated (i.e., distant analogs of “Seyfert galaxies”) and/or more dust reddened than the standard-pipeline quasars. We also show example spectra to demonstrate the overall diversity of the DESI quasar sample and provide strong-lensing candidates where two targets contribute to a single spectrum.

     
    more » « less