skip to main content


Search for: All records

Creators/Authors contains: "Prakapenka, V. B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Abstract

    The production of metal via the iron disproportionation reaction in the deep Earth has been a long debated topic with important implications for the geochemistry of the lower mantle. To explore the occurrence of the iron disproportionation reaction from 25 to 65 GPa, a natural almandine‐pyrope‐grossular garnet was studied with in situ X‐ray diffraction (XRD) in the laser‐heated diamond anvil cell and ex situ scanning electron microscopy (SEM) techniques. Upon heating the natural almandine‐pyrope‐grossular garnet up to 3000 K up to 65 GPa, the formation of phase assemblage consisting of bridgmanite, stishovite, and davemaoite was confirmed by XRD, but because of the low abundance of Fe metal and small grain size, XRD was determined not to be effective in detecting the disproportionation reaction. Examination of the samples recovered between 39 and 64 GPa by SEM analysis revealed the presence of nm‐scale disproportionated iron metal grains as an additional product of this reaction that was not detectable in the XRD patterns. Volume compression data of bridgmanite synthesized in the experiments were fit to the Birch‐Murnaghan equation of state and compared to similar compositions. Bridgmanite was found to decompress to the LiNbO3‐type structure, indicating a high FeAlO3content, in accordance with the occurrence of a disproportionation reaction. The experimental confirmation of disproportionated metallic Fe has significant implications for the distribution of siderophile and volatile elements in the lower mantle.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    X-ray diffraction indicates that the structure of the recently discovered carbonaceous sulfur hydride (C-S-H) room temperature superconductor is derived from previously established van der Waals compounds found in the H2S-H2 and CH4-H2 systems. Crystals of the superconducting phase were produced by a photochemical synthesis technique leading to the superconducting critical temperature Tc of 288 K at 267 GPa. X-ray diffraction patterns measured from 124 to 178 GPa, within the pressure range of the superconducting phase, are consistent with an orthorhombic structure derived from the Al2Cu-type determined for (H2S)2H2 and (CH4)2H2 that differs from those predicted and observed for the S-H system to these pressures. The formation and stability of the C-S-H compound can be understood in terms of the close similarity in effective volumes of the H2S and CH4 components, and denser carbon-bearing S-H phases may form at higher pressures. The results are crucial for understanding the very high superconducting Tc found in the C-S-H system at megabar pressures. 
    more » « less
  5. Abstract

    Super‐Earths ranging up to 10 Earth masses (ME) with Earth‐like density are common among the observed exoplanets thus far, but their measured masses and radii do not uniquely elucidate their internal structure. Exploring the phase transitions in the Mg‐silicates that define the mantle‐structure of super‐Earths is critical to characterizing their interiors, yet the relevant terapascal conditions are experimentally challenging for direct structural analysis. Here we investigated the crystal chemistry of Fe3O4as a low‐pressure analog to Mg2SiO4between 45–115 GPa and up to 3000 K using powder and single crystal X‐ray diffraction in the laser‐heated diamond anvil cell. Between 60–115 GPa and above 2000 K, Fe3O4adopts an 8‐fold coordinated Th3P4‐type structure (I‐43d,Z = 4) with disordered Fe2+and Fe3+into one metal site. This Fe‐oxide phase is isostructural with that predicted for Mg2SiO4above 500 GPa in super‐Earth mantles and suggests that Mg2SiO4can incorporate both ferric and ferrous iron at these conditions. The pressure‐volume behavior observed in this 8‐fold coordinated Fe3O4indicates a maximum 4% density increase across the 6‐ to 8‐fold coordination transition in the analog Mg‐silicate. Reassessment of the FeO—Fe3O4fugacity buffer considering the Fe3O4phase relationships identified in this study reveals that increasing pressure and temperature to 120 GPa and 3000 K in Earth and planetary mantles drives iron toward oxidation.

     
    more » « less
  6. Abstract

    Akimotoite (Mg,Fe)SiO3is one of the most common mineralogical indicators for high‐level shock metamorphism in meteorites. First described 1997, its occurrence has been amply confirmed in a number of highly shocked chondrites. Yet, a thorough structure analysis of natural akimotoite has remained extant. Here we report accurate cell parameters, fractional atomic coordinates, and site occupancies for natural akimotoite from the holotype specimen based on synchrotron microdiffraction. The variation of unit cell shape and volume with Fe content define mixing volumes. Based on the mixing volume relation for akimotoite and hemleyite, we constrain the unit cell volume of endmember hemleyite to 273.8 ± 1.0 Å3. We show that mixing is nearly ideal for low Fe content but evolves to positive excess volume toward the Fe endmember. Based on this finding and the actual composition of akimotoite in Tenham, we show that this mineral has formed by solid–solid transformation prograde from enstatite, not by crystallization from melt.

     
    more » « less