skip to main content


Search for: All records

Creators/Authors contains: "Pringle, J. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    More than 36 yr have passed since the discovery of the infrared excess from circumstellar dust orbiting the white dwarf G29-38, which at 17.5 pc it is the nearest and brightest of its class. The precise morphology of the orbiting dust remains only marginally constrained by existing data, subject to model-dependent inferences, and thus fundamental questions of its dynamical origin and evolution persist. This study presents a means to constrain the geometric distribution of the emitting dust using stellar pulsations measured at optical wavelengths as a variable illumination source of the dust, which reradiates primarily in the infrared. By combining optical photometry from the Whole Earth Telescope with 0.7–2.5μm spectroscopy obtained with SpeX at NASA’s Infrared Telescope Facility, we detect luminosity variations at all observed wavelengths, with variations at most wavelengths corresponding to the behavior of the pulsating stellar photosphere, but toward the longest wavelengths the light curves probe the corresponding time variability of the circumstellar dust. In addition to developing methodology, we find the pulsation amplitudes decrease with increasing wavelength for principal pulsation modes, yet increase beyond ≈2μm for nonlinear combination frequencies. We interpret these results as combination modes derived from the principal modes of identicalvalues and discuss the implications for the morphology of the warm dust. We also draw attention to some discrepancies between our findings and theoretical expectations for the results of the nonlinearity imposed by the surface convection zone on mode–mode interactions and on the behavior of the first harmonic of the highest-amplitude pulsation mode.

     
    more » « less
  2. null (Ed.)
  3. ABSTRACT We have made high-precision polarimetric observations of the polluted white dwarf G29-38 with the HIgh Precision Polarimetric Instrument 2. The observations were made at two different observatories – using the 8.1-m Gemini North Telescope and the 3.9-m Anglo-Australian Telescope – and are consistent with each other. After allowing for a small amount of interstellar polarization, the intrinsic linear polarization of the system is found to be 275.3 ± 31.9 parts per million at a position angle of 90.8 ± 3.8° in the SDSS g′ band. We compare the observed polarization with the predictions of circumstellar disc models. The measured polarization is small in the context of the models we develop, which only allows us to place limits on disc inclination and Bond albedo for optically thin disc geometries. In this case, either the inclination is near-face-on or the albedo is small – likely in the range 0.05–0.15 – which is in line with other debris disc measurements. A preliminary search for the effects of G29-38’s pulsations in the polarization signal produced inconsistent results. This may be caused by beating effects, indicate a clumpy dust distribution, or be a consequence of measurement systematics. 
    more » « less
  4. ABSTRACT We present the results of a multiwavelength follow-up campaign for the luminous nuclear transient Gaia16aax, which was first identified in 2016 January. The transient is spatially consistent with the nucleus of an active galaxy at z = 0.25, hosting a black hole of mass ${\sim }6\times 10^8\, \mathrm{M}_\odot$. The nucleus brightened by more than 1 mag in the Gaia G band over a time-scale of less than 1 yr, before fading back to its pre-outburst state over the following 3 yr. The optical spectra of the source show broad Balmer lines similar to the ones present in a pre-outburst spectrum. During the outburst, the H α and H β emission lines develop a secondary peak. We also report on the discovery of two transients with similar light-curve evolution and spectra: Gaia16aka and Gaia16ajq. We consider possible scenarios to explain the observed outbursts. We exclude that the transient event could be caused by a microlensing event, variable dust absorption or a tidal encounter between a neutron star and a stellar mass black hole in the accretion disc. We consider variability in the accretion flow in the inner part of the disc, or a tidal disruption event of a star ${\ge } 1 \, \mathrm{M}_{\odot }$ by a rapidly spinning supermassive black hole as the most plausible scenarios. We note that the similarity between the light curves of the three Gaia transients may be a function of the Gaia alerts selection criteria. 
    more » « less