skip to main content


Search for: All records

Creators/Authors contains: "Psaltis, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. The γ -process nucleosynthesis in core-collapse supernovae is generally accepted as a feasible process for the synthesis of neutron-deficient isotopes beyond iron. However, crucial discrepancies between theory and observations still exist: the average yields of γ -process nucleosynthesis from massive stars are still insufficient to reproduce the solar distribution in galactic chemical evolution calculations, and the yields of the Mo and Ru isotopes are a factor of ten lower than the yields of the other γ -process nuclei. Aims. We investigate the γ -process in five sets of core-collapse supernova models published in the literature with initial masses of 15, 20, and 25 M ⊙ at solar metallicity. Methods. We compared the γ -process overproduction factors from the different models. To highlight the possible effect of nuclear physics input, we also considered 23 ratios of two isotopes close to each other in mass relative to their solar values. Further, we investigated the contribution of C–O shell mergers in the supernova progenitors as an additional site of the γ -process. Results. Our analysis shows that a large scatter among the different models exists for both the γ -process integrated yields and the isotopic ratios. We find only ten ratios that agree with their solar values, all the others differ by at least a factor of three from the solar values in all the considered sets of models. The γ -process within C–O shell mergers mostly influences the isotopic ratios that involve intermediate and heavy proton-rich isotopes with A  > 100. Conclusions. We conclude that there are large discrepancies both among the different data sets and between the model predictions and the solar abundance distribution. More calculations are needed; particularly updating the nuclear network, because the majority of the models considered in this work do not use the latest reaction rates for the γ -process nucleosynthesis. Moreover, the role of C–O shell mergers requires further investigation. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract A promising astrophysical site to produce the lighter heavy elements of the first r -process peak ( Z = 38 − 47) is the moderately neutron-rich (0.4 < Y e < 0.5) neutrino-driven ejecta of explosive environments, such as core-collapse supernovae and neutron star mergers, where the weak r -process operates. This nucleosynthesis exhibits uncertainties from the absence of experimental data from ( α , xn ) reactions on neutron-rich nuclei, which are currently based on statistical model estimates. In this work, we report on a new study of the nuclear reaction impact using a Monte Carlo approach and improved ( α , xn ) rates based on the Atomki-V2 α optical model potential. We compare our results with observations from an up-to-date list of metal-poor stars with [Fe/H] < −1.5 to find conditions of the neutrino-driven wind where the lighter heavy elements can be synthesized. We identified a list of ( α , xn ) reaction rates that affect key elemental ratios in different astrophysical conditions. Our study aims to motivate more nuclear physics experiments on ( α , xn ) reactions using the current and new generation of radioactive beam facilities and also more observational studies of metal-poor stars. 
    more » « less
  3. Free, publicly-accessible full text available September 1, 2024
  4. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Sensitivity studies have shown that the 15 O(α, γ) 19 Ne reaction is the most important reaction rate uncertainty affecting the shape of light curves from Type I X-ray bursts. This reaction is dominated by the 4.03 MeV resonance in 19 Ne. Previous measurements by our group have shown that this state is populated in the decay sequence of 20 Mg. A single 20 Mg(βp α) 15 O event through the key 15 O(α, γ) 19 Ne resonance yields a characteristic signature: the emission of a proton and alpha particle. To achieve the granularity necessary for the identification of this signature, we have upgraded the Proton Detector of the Gaseous Detector with Germanium Tagging (GADGET) into a time projection chamber to form the GADGET II detection system. GADGET II has been fully constructed, and is entering the testing phase. 
    more » « less
  5. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    15 O( α , γ ) 19 Ne is regarded as one of the most important thermonuclear reactions in type I X-ray bursts. For studying the properties of the key resonance in this reaction using β decay, the existing Proton Detector component of the Gaseous Detector with Germanium Tagging (GADGET) assembly is being upgraded to operate as a time projection chamber (TPC) at FRIB. This upgrade includes the associated hardware as well as software and this paper mainly focusses on the software upgrade. The full detector set up is simulated using the ATTPCROOTv 2 data analysis framework for 20 Mg and 241 Am. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Experimental studies on astrophysical reactions involving radioactive isotopes (RI) often accompany technical challenges. Studies on such nuclear reactions have been conducted at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study, the University of Tokyo. We discuss two cases of astrophysical reaction studies at CRIB; one is for the 7 Be+ n reactions which may affect the primordial 7 Li abundance in the Big-Bang nucleosynthesis, and the other is for the 22 Mg( α , p ) reaction relevantin X-raybursts. 
    more » « less