skip to main content


Search for: All records

Creators/Authors contains: "Pu, Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 31, 2024
  2. The enantiomers of chiral amino acids play versatile roles in biological systems including humans. They are also very useful in the asymmetric synthesis of diverse chiral organic compounds. Therefore, identifying a specific amino acid and distinguishing it from its enantiomer are of great importance. Although significant progress has been made in the development of fluorescent probes for amino acids, most of them are not capable of conducting simultaneous chemoselective and enantioselective detection of a specific amino acid enantiomer. In this article, several fluorescent probes have been designed and synthesized for chemoselective as well as enantioselective recognition of certain amino acid enantiomers. ( S )-1 shows greatly enhanced fluorescence in the presence of l -glutamic acid and l -aspartic acid, but produces no or little fluorescence response toward their opposite enantiomers and other amino acids. ( R )-4 in combination with Zn 2+ shows greatly enhanced fluorescence in the presence of l -serine. ( S )-6 is designed for the selective recognition of histidine. Micelles made of an amphiphilic diblock copolymer are used to encapsulate the water-insoluble compound ( S )-8 which shows chemoselective as well as enantioselective fluorescence enhancement with l -lysine in the presence of Zn 2+ in aqueous solution. The same micelles are also used to encapsulate several ( S )-1,1′-binaphthyl-based monoaldehydes ( S )-10 for the chemoselective and enantioselective fluorescence recognition of l -tryptophan in the presence of Zn 2+ in aqueous solution. These findings have demonstrated that highly selective fluorescence identification of a specific amino acid enantiomer can be achieved by incorporating certain functional groups at the designated locations of the 1,1′-binaphthyls. The binaphthyl core structure of these probes provides both a chirality source and highly tunable fluorescence properties. Matching the structure and chirality of these probes with those of the specific amino acid enantiomers can generate structurally rigid reaction products and give rise to greatly enhanced fluorescence. The strategies of this work can be further expanded to develop fluorescent probes for the specific identification of many amino acids of interest. This should facilitate the analysis of chiral amino acids in various applications. The outlook of this research and its comparison with other methods are also discussed. 
    more » « less
  3. Abstract

    The first near IR fluorescent probe for the chemoselective and enantioselective recognition of arginine in aqueous solution is reported in this work. This probe, made of a 1,1’‐binaphthyl‐based chiral aldehyde unit and a rhodamine‐based near IR chromophore, in combination with La3+exhibits highly chemoselective as well as enantioselective fluorescent enhancement with arginine at λ=764 nm upon excitation at λ=690 nm. Little or no fluorescent response is observed toward the chirality miss‐matched arginine enantiomer or other common amino acids and their enantiomers. This probe also allows visual discrimination of the arginine enantiomers because of its fast and distinct color change upon interaction with the substrate.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    A chemoselective as well as enantioselective fluorescent probe has been developed to determine both the concentration and enantiomeric composition of the biologically important amino acid histidine by measuring the fluorescence responses when excited at two different wavelengths. 
    more » « less