skip to main content


Search for: All records

Creators/Authors contains: "Puretzky, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 8, 2024
  2. Free, publicly-accessible full text available December 12, 2024
  3. Free, publicly-accessible full text available August 16, 2024
  4. Abstract

    The interplay between magnetism and electronic band topology enriches topological phases and has promising applications. However, the role of topology in magnetic fluctuations has been elusive. Here, we report evidence for topology stabilized magnetism above the magnetic transition temperature in magnetic Weyl semimetal candidate CeAlGe. Electrical transport, thermal transport, resonant elastic X-ray scattering, and dilatometry consistently indicate the presence of locally correlated magnetism within a narrow temperature window well above the thermodynamic magnetic transition temperature. The wavevector of this short-range order is consistent with the nesting condition of topological Weyl nodes, suggesting that it arises from the interaction between magnetic fluctuations and the emergent Weyl fermions. Effective field theory shows that this topology stabilized order is wavevector dependent and can be stabilized when the interband Weyl fermion scattering is dominant. Our work highlights the role of electronic band topology in stabilizing magnetic order even in the classically disordered regime.

     
    more » « less
  5. Movies showing the nucleation of WSe2 on Al2O2 with mixed (Se/O) and single (Se) steps. 
    more » « less
  6. Solid-state single-photon emitters (SPEs) such as the bright, stable, room-temperature defects within hexagonal boron nitride (hBN) are of increasing interest for quantum information science. To date, the atomic and electronic origins of SPEs within hBN have not been well understood, and no studies have reported photochromism or explored cross correlations between hBN SPEs. Here, we combine irradiation time-dependent microphotoluminescence spectroscopy with two-color Hanbury Brown–Twiss interferometry in an investigation of the electronic structure of hBN defects. We identify evidence of photochromism in an hBN SPE that exhibits single-photon cross correlations and correlated changes in the intensity of its two zero-phonon lines.

     
    more » « less