skip to main content


Search for: All records

Creators/Authors contains: "Qiang, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2024
  2. Free, publicly-accessible full text available December 31, 2024
  3. Abstract

    Techniques to study brain activities have evolved dramatically, yet tremendous challenges remain in acquiring high-throughput electrophysiological recordings minimally invasively. Here, we develop an integrated neuroelectronic array that is filamentary, high-density and flexible. Specifically, with a design of single-transistor multiplexing and current sensing, the total 256 neuroelectrodes achieve only a 2.3 × 0.3 mm2area, unprecedentedly on a flexible substrate. A single-transistor multiplexing acquisition circuit further reduces noise from the electrodes, decreases the footprint of each pixel, and potentially increases the device’s lifetime. The filamentary neuroelectronic array also integrates with a rollable contact pad design, allowing the device to be injected through a syringe, enabling potential minimally invasive array delivery. Successful acute auditory experiments in rats validate the ability of the array to record neural signals with high tone decoding accuracy. Together, these results establish soft, high-density neuroelectronic arrays as promising devices for neuroscience research and clinical applications.

     
    more » « less
  4. Many spatial analysis methods suffer from the scaling issue identified as part of the Modifiable Areal Unit Problem (MAUP). This article introduces the Pyramid Model (PM), a hierarchical data framework integrating space and spatial scale in a 3D environment to support multi-scale analysis. The utility of the PM is tested in examining quadrat density and kernel density, which are commonly used measures of point patterns. The two metrics computed from a simulated point set with varying scaling parameters (i.e. quadrats and bandwidths) are represented in the PM. The PM permits examination of the variation of the density metrics computed at all different scales. 3D visualization techniques (e.g. volume display, isosurfaces, and slicing) allow users to observe nested relations between spatial patterns at different scales and understand the scaling issue and MAUP in spatial analysis. A tool with interactive controls is developed to support visual exploration of the internal patterns in the PM. In addition to the point pattern measures, the PM has potential in analyzing other spatial indices, such as spatial autocorrelation indicators, coefficients of regression analysis and accuracy measures of spatial models. The implementation of the PM further advances the development of a multi-scale framework for spatio-temporal analysis. 
    more » « less
  5. Quantitative assessment of community resilience is a challenge due to the lack of empirical data about human dynamics in disasters. To fill the data gap, this study explores the utility of nighttime lights (NTL) remote sensing images in assessing community recovery and resilience in natural disasters. Specifically, this study utilized the newly-released NASA moonlight-adjusted SNPP-VIIRS daily images to analyze spatiotemporal changes of NTL radiance in Hurricane Sandy (2012). Based on the conceptual framework of recovery trajectory, NTL disturbance and recovery during the hurricane were calculated at different spatial units and analyzed using spatial analysis tools. Regression analysis was applied to explore relations between the observed NTL changes and explanatory variables, such as wind speed, housing damage, land cover, and Twitter keywords. The result indicates potential factors of NTL changes and urban-rural disparities of disaster impacts and recovery. This study shows that NTL remote sensing images are a low-cost instrument to collect near-real-time, large-scale, and high-resolution human dynamics data in disasters, which provide a novel insight into community recovery and resilience. The uncovered spatial disparities of community recovery help improve disaster awareness and preparation of local communities and promote resilience against future disasters. The systematical documentation of the analysis workflow provides a reference for future research in the application of SNPP-VIIRS daily images. 
    more » « less
  6. Distance is the most fundamental metric in spatial analysis and modeling. Planar distance and geodesic distance are the common distance measurements in current geographic information systems and geospatial analytic tools. However, there is little understanding about how to measure distance in a digital terrain surface and the uncertainty of the measurement. To fill this gap, this study applies a Monte‐Carlo simulation to evaluate seven surface‐adjustment methods for distance measurement in digital terrain model. Using parallel computing techniques and a memory optimization method, the processing time for the distances calculation of 6,000 simulated transects has been reduced to a manageable level. The accuracy and computational efficiency of the surface‐adjustment methods were systematically compared in six study areas with various terrain types and in digital elevation models in different resolutions. Major findings of this study indicate a trade‐off between measurement accuracy and computational efficiency: calculations at finer resolution DEMs improve measurement accuracy but increase processing times. Among the methods compared, the weighted average demonstrates highest accuracy and second fastest processing time. Additionally, the choice of surface adjustment method has a greater impact on the accuracy of distance measurements in rougher terrain. 
    more » « less
  7. null (Ed.)