skip to main content


Search for: All records

Creators/Authors contains: "Qu, H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δw) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δw= 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δwranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty onwfrom the DES-SN5YR sample of ∼0.03. We conclude that the bias onwfrom host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts.

     
    more » « less
  2. Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is non-trivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5-Year (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift difference between the true and matched host of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Dw) due to including SNe with incorrect host galaxy matches. For SN Ia-only simulations, we find Dw = 0.0013 +/- 0.0026 with constraints from the cosmic microwave background (CMB). Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Dw ranges from 0.0009 to 0.0032 depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty on w from the DES-SN5YR sample of around 0.03. We conclude that the bias on w from host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is in- formative and important to understand motion mechanisms of body regions. Modeling such in- formation into the MRI reconstruction process produces temporally coherent image sequence and reduces imaging artifacts and blurring. However, existing deep learning based approaches neglect motion information during the reconstruction procedure, while traditional motion-guided methods are hindered by heuristic parameter tuning and long inference time. We propose a novel dynamic MRI reconstruction approach called MODRN that unitizes deep neural networks with motion in- formation to improve reconstruction quality. The central idea is to decompose the motion-guided optimization problem of dynamic MRI reconstruction into three components: dynamic reconstruc- tion, motion estimation and motion compensation. Extensive experiments have demonstrated the effectiveness of our proposed approach compared to other state-of-the-art approaches. 
    more » « less
  4. Existing neural cell tracking methods generally use the morphology cell features for data association. However, these features are limited to the quality of cell segmentation and are prone to errors for mitosis determination. To over- come these issues, in this work we propose an online multi- object tracking method that leverages both cell appearance and motion features for data association. In particular, we propose a supervised blob-seed network (BSNet) to predict the cell appearance features and an unsupervised optical flow network (UnFlowNet) for capturing the cell motions. The data association is then solved using the Hungarian al- gorithm. Experimental evaluation shows that our approach achieves better performance than existing neural cell track- ing methods. 
    more » « less
  5. Nuclei segmentation is a fundamental task in histopathological image analysis. Typically, such segmentation tasks require significant effort to manually generate pixel-wise annotations for fully supervised training. To alleviate the manual effort, in this paper we propose a novel approach using points only annotation. Two types of coarse labels with complementary information are derived from the points annotation, and are then utilized to train a deep neural network. The fully- connected conditional random field loss is utilized to further refine the model without introducing extra computational complexity during inference. Experimental results on two nuclei segmentation datasets reveal that the proposed method is able to achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods while requiring significantly less annotation effort. Our code is publicly available. 
    more » « less
  6. Abstract

    Wavelength-dependent atmospheric effects impact photometric supernova flux measurements for ground-based observations. We present corrections on supernova flux measurements from the Dark Energy Survey Supernova Program’s 5YR sample (DES-SN5YR) for differential chromatic refraction (DCR) and wavelength-dependent seeing, and we show their impact on the cosmological parameterswand Ωm. We usegicolors of Type Ia supernovae to quantify astrometric offsets caused by DCR and simulate point-spread functions (PSFs) using the GalSIM package to predict the shapes of the PSFs with DCR and wavelength-dependent seeing. We calculate the magnitude corrections and apply them to the magnitudes computed by the DES-SN5YR photometric pipeline. We find that for the DES-SN5YR analysis, not accounting for the astrometric offsets and changes in the PSF shape cause an average bias of +0.2 mmag and −0.3 mmag, respectively, with standard deviations of 0.7 mmag and 2.7 mmag across all DES observing bands (griz) throughout all redshifts. When the DCR and seeing effects are not accounted for, we find thatwand Ωmare lower by less than 0.004 ± 0.02 and 0.001 ± 0.01, respectively, with 0.02 and 0.01 being the 1σstatistical uncertainties. Although we find that these biases do not limit the constraints of the DES-SN5YR sample, future surveys with much higher statistics, lower systematics, and especially those that observe in theuband will require these corrections as wavelength-dependent atmospheric effects are larger at shorter wavelengths. We also discuss limitations of our method and how they can be better accounted for in future surveys.

     
    more » « less
  7. We consider an MRI reconstruction problem with input of k-space data at a very low undersampled rate. This can prac- tically benefit patient due to reduced time of MRI scan, but it is also challenging since quality of reconstruction may be compromised. Currently, deep learning based methods dom- inate MRI reconstruction over traditional approaches such as Compressed Sensing, but they rarely show satisfactory performance in the case of low undersampled k-space data. One explanation is that these methods treat channel-wise fea- tures equally, which results in degraded representation ability of the neural network. To solve this problem, we propose a new model called MRI Cascaded Channel-wise Attention Network (MICCAN), highlighted by three components: (i) a variant of U-net with Channel-wise Attention (UCA) mod- ule, (ii) a long skip connection and (iii) a combined loss. Our model is able to attend to salient information by filtering irrelevant features and also concentrate on high-frequency in- formation by enforcing low-frequency information bypassed to the final output. We conduct both quantitative evaluation and qualitative analysis of our method on a cardiac dataset. The experiment shows that our method achieves very promis- ing results in terms of three common metrics on the MRI reconstruction with low undersampled k-space data. Code is public available 
    more » « less
  8. Neural cell instance segmentation serves as a valuable tool for the study of neural cell behaviors. In general, the instance segmentation methods compute the region of interest (ROI) through a detection module, where the segmentation is sub- sequently performed. To precisely segment the neural cells, especially their tiny and slender structures, existing work em- ploys a u-net structure to preserve the low-level details and encode the high-level semantics. However, such method is insufficient for differentiating the adjacent cells when large parts of them are included in the same cropped ROI. To solve this problem, we propose a context-refined neural cell instance segmentation model that learns to suppress the back- ground information. In particular, we employ a light-weight context refinement module to recalibrate the deep features and focus the model exclusively on the target cell within each cropped ROI. The proposed model is efficient and accurate, and experimental results demonstrate its superiority com- pared to the state-of-the-arts. 
    more » « less
  9. Nuclei segmentation and classification are two important tasks in the histopathology image analysis, because the mor- phological features of nuclei and spatial distributions of dif- ferent types of nuclei are highly related to cancer diagnosis and prognosis. Existing methods handle the two problems independently, which are not able to obtain the features and spatial heterogeneity of different types of nuclei at the same time. In this paper, we propose a novel deep learning based method which solves both tasks in a unified framework. It can segment individual nuclei and classify them into tumor, lymphocyte and stroma nuclei. Perceptual loss is utilized to enhance the segmentation of details. We also take advantages of transfer learning to promote the training of deep neural net- works on a relatively small lung cancer dataset. Experimental results prove the effectiveness of the proposed method. The code is publicly available 
    more » « less