skip to main content


Search for: All records

Creators/Authors contains: "Raaf, J.L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The MicroBooNE liquid argon time projection chamber (LArTPC) maintains a high level of liquid argon purity through the use of a filtration system that removes electronegative contaminants in continuously-circulated liquid, recondensed boil off, and externally supplied argon gas. We use the MicroBooNE LArTPC to reconstruct MeV-scale radiological decays. Using this technique we measure the liquid argon filtration system's efficacy at removing radon. This is studied by placing a 500 kBq 222 Rn source upstream of the filters and searching for a time-dependent increase in the number of radiological decays in the LArTPC. In the context of two models for radon mitigation via a liquid argon filtration system, a slowing mechanism and a trapping mechanism, MicroBooNE data supports a radon reduction factor of greater than 97% or 99.999%, respectively. Furthermore, a radiological survey of the filters found that the copper-based filter material was the primary medium that removed the 222 Rn. This is the first observation of radon mitigation in liquid argon with a large-scale copper-based filter and could offer a radon mitigation solution for future large LArTPCs. 
    more » « less
  2. Abstract In this article, we describe a modified implementation of Mask Region-based Convolutional Neural Networks (Mask-RCNN) for cosmic ray muon clustering in a liquid argon TPC and applied to MicroBooNE neutrino data. Our implementation of this network, called sMask-RCNN, uses sparse submanifold convolutions to increase processing speed on sparse datasets, and is compared to the original dense version in several metrics. The networks are trained to use wire readout images from the MicroBooNE liquid argon time projection chamber as input and produce individually labeled particle interactions within the image. These outputs are identified as either cosmic ray muon or electron neutrino interactions. We find that sMask-RCNN has an average pixel clustering efficiency of 85.9% compared to the dense network's average pixel clustering efficiency of 89.1%. We demonstrate the ability of sMask-RCNN used in conjunction with MicroBooNE's state-of-the-art Wire-Cell cosmic tagger to veto events containing only cosmic ray muons. The addition of sMask-RCNN to the Wire-Cell cosmic tagger removes 70% of the remaining cosmic ray muon background events at the same electron neutrino event signal efficiency. This event veto can provide 99.7% rejection of cosmic ray-only background events while maintaining an electron neutrino event-level signal efficiency of 80.1%. In addition to cosmic ray muon identification, sMask-RCNN could be used to extract features and identify different particle interaction types in other 3D-tracking detectors. 
    more » « less
  3. Abstract Wire-Cell is a 3D event reconstruction package for liquid argon time projection chambers. Through geometry, time, and drifted charge from multiple readout wire planes, 3D space points with associated charge are reconstructed prior to the pattern recognition stage. Pattern recognition techniques, including track trajectory and d Q /d x (ionization charge per unit length) fitting, 3D neutrino vertex fitting, track and shower separation, particle-level clustering, and particle identification are then applied on these 3D space points as well as the original 2D projection measurements. A deep neural network is developed to enhance the reconstruction of the neutrino interaction vertex. Compared to traditional algorithms, the deep neural network boosts the vertex efficiency by a relative 30% for charged-current ν e interactions. This pattern recognition achieves 80–90% reconstruction efficiencies for primary leptons, after a 65.8% (72.9%) vertex efficiency for charged-current ν e (ν μ ) interactions. Based on the resulting reconstructed particles and their kinematics, we also achieve 15-20% energy reconstruction resolutions for charged-current neutrino interactions. 
    more » « less
  4. Abstract This article presents the reconstruction of the electromagnetic activity from electrons and photons (showers) used in the MicroBooNE deep learning-based low energy electron search. The reconstruction algorithm uses a combination of traditional and deep learning-based techniques to estimate shower energies. We validate these predictions using two ν μ -sourced data samples: charged/neutral current interactions with final state neutral pions and charged current interactions in which the muon stops and decays within the detector producing a Michel electron. Both the neutral pion sample and Michel electron sample demonstrate agreement between data and simulation. Further, the absolute shower energy scale is shown to be consistent with the relevant physical constant of each sample: the neutral pion mass peak and the Michel energy cutoff. 
    more » « less
  5. Abstract Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, D L , in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This is the largest dataset ever used for this measurement. Using a sample of ∼70,000 through-going cosmic ray muon tracks tagged with MicroBooNE's cosmic ray tagger system, we measure D L = 3.74 +0.28 -0.29 cm 2 /s. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)