skip to main content


Search for: All records

Creators/Authors contains: "Ram, Jeffrey L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nguyen, Nam-Trung ; Munoz, Rodrigo Alejandro ; Kalinke, Cristiane (Ed.)
    Engineering microfluidic devices relies on the ability to manufacture sub-100 micrometer fluidic channels. Conventional lithographic methods provide high resolution but require costly exposure tools and outsourcing of masks, which extends the turnaround time to several days. The desire to accelerate design/test cycles has motivated the rapid prototyping of microfluidic channels; however, many of these methods (e.g., laser cutters, craft cutters, fused deposition modeling) have feature sizes of several hundred microns or more. In this paper, we describe a 1-day process for fabricating sub-100 µm channels, leveraging a low-cost (USD 600) 8K digital light projection (DLP) 3D resin printer. The soft lithography process includes mold printing, post-treatment, and casting polydimethylsiloxane (PDMS) elastomer. The process can produce microchannels with 44 µm lateral resolution and 25 µm height, posts as small as 400 µm, aspect ratio up to 7, structures with varying z-height, integrated reservoirs for fluidic connections, and a built-in tray for casting. We discuss strategies to obtain reliable structures, prevent mold warpage, facilitate curing and removal of PDMS during molding, and recycle the solvents used in the process. To our knowledge, this is the first low-cost 3D printer that prints extruded structures that can mold sub-100 µm channels, providing a balance between resolution, turnaround time, and cost (~USD 5 for a 2 × 5 × 0.5 cm^3 chip) that will be attractive for many microfluidics labs. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Early detection of the COVID-19 virus, SARS-CoV-2, is key to mitigating the spread of new outbreaks. Data from individual testing is increasingly difficult to obtain as people conduct non-reported home tests, defer tests due to logistics or attitudes, or ignore testing altogether. Wastewater based epidemiology is an alternative method for surveilling a community while maintaining individual anonymity; however, a problem is that SARS-CoV-2 markers in wastewater vary throughout the day. Collecting grab samples at a single time may miss marker presence, while autosampling throughout a day is technically challenging and expensive. This study investigates a passive sampling method that would be expected to accumulate greater amounts of viral material from sewers over a period of time. Tampons were tested as passive swab sampling devices from which viral markers could be eluted with a Tween-20 surfactant wash. Six sewersheds in Detroit were sampled 16–22 times by paired swab (4 h immersion before retrieval) and grab methods over a five-month period and enumerated for N1 and N2 SARS-CoV-2 markers using ddPCR. Swabs detected SARS-CoV-2 markers significantly more frequently (P < 0.001) than grab samples, averaging two to three-fold more copies of SARS-CoV-2 markers than their paired grab samples (p < 0.0001) in the assayed volume (10 mL) of wastewater or swab eluate. No significant difference was observed in the recovery of a spiked-in control (Phi6), indicating that the improved sensitivity is not due to improvements in nucleic acid recovery or reduction of PCR inhibition. The outcomes of swab-based sampling varied significantly between sites, with swab samples providing the greatest improvements in counts for smaller sewersheds that otherwise tend to have greater variation in grab sample counts. Swab-sampling with tampons provides significant advantages in detection of SARS-CoV-2 wastewater markers and are expected to provide earlier detection of new outbreaks than grab samples, with consequent public health benefits. 
    more » « less
    Free, publicly-accessible full text available May 11, 2024
  3. Wastewater surveillance for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging approach to help identify the risk of a coronavirus disease (COVID-19) outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, and nursing homes) scales. This paper explores the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation. We present the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resources, and impacts from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions. Our analysis suggests that wastewater monitoring at colleges requires consideration of local information needs, sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members. 
    more » « less