skip to main content


Search for: All records

Creators/Authors contains: "Ranganathan, Aanjhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern aircraft heavily rely on several wireless technologies for communications, control, and navigation. Researchers demonstrated vulnerabilities in many aviation systems. However, the resilience of the aircraft landing systems to adversarial wireless attacks have not yet been studied in the open literature, despite their criticality and the increasing availability of low-cost software-defined radio (SDR) platforms. In this paper, we investigate the vulnerability of aircraft instrument landing systems (ILS) to wireless attacks. We show the feasibility of spoofing ILS radio signals using commercially-available SDR, causing last-minute go around decisions, and even missing the landing zone in low-visibility scenarios. We demonstrate on aviation-grade ILS receivers that it is possible to fully and in fine-grain control the course deviation indicator as displayed by the ILS receiver, in real-time. We analyze the potential of both an overshadowing attack and a lower-power single-tone attack. In order to evaluate the complete attack, we develop a tightly-controlled closed-loop ILS spoofer that adjusts the adversary's transmitted signals as a function of the aircraft GPS location, maintaining power and deviation consistent with the adversary's target position, causing an undetected off-runway landing. We systematically evaluate the performance of the attack against an FAA certified flight-simulator (X-Plane)'s AI-based autoland feature and demonstrate systematic success rate with offset touchdowns of 18 meters to over 50 meters. 
    more » « less
  2. Location information is critical to a wide variety of navigation and tracking applications. GPS, today's de-facto outdoor localization system has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination and monitored by an INS-aided GPS system. The goal of the adversary is to travel to alternate locations without being detected. We develop and evaluate algorithms that achieve this goal, providing the adversary significant latitude. Our algorithms build a graph model for a given road network and enable us to derive potential destinations an attacker can reach without raising alarms even with the INS-aided GPS tracking and navigation system. The algorithms render the gyroscope and accelerometer sensors useless as they generate road trajectories indistinguishable from plausible paths (both in terms of turn angles and roads curvature). We also design, build and demonstrate that the magnetometer can be actively spoofed using a combination of carefully controlled coils. To experimentally demonstrate and evaluate the feasibility of the attack in real-world, we implement a first real-time integrated GPS/INS spoofer that accounts for traffic fluidity, congestion, lights, and dynamically generates corresponding spoofing signals. Furthermore, we evaluate our attack on ten different cities using driving traces and publicly available city plans. Our evaluations show that it is possible for an attacker to reach destinations that are as far as 30 km away from the actual destination without being detected. We also show that it is possible for the adversary to reach almost 60--80% of possible points within the target region in some cities. Such results are only a lower-bound, as an adversary can adjust our parameters to spend more resources (e.g., time) on the target source/destination than we did for our performance evaluations of thousands of paths. We propose countermeasures that limit an attacker's ability, without the need for any hardware modifications. Our system can be used as the foundation for countering such attacks, both detecting and recommending paths that are difficult to spoof. 
    more » « less