skip to main content


Search for: All records

Creators/Authors contains: "Rao, Jian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The tropospheric response to midwinter sudden stratospheric warmings (SSWs) is examined using an idealized model. SSW events are triggered by imposing high-latitude stratospheric heating perturbations of varying magnitude for only a few days, spun off from a free-running control integration (CTRL). The evolution of the thermally triggered SSWs is then compared with naturally occurring SSWs identified in CTRL. By applying a heating perturbation, with no modification to the momentum budget, it is possible to isolate the tropospheric response directly attributable to a change in the stratospheric polar vortex, independent of any planetary wave momentum torques involved in the initiation of an SSW. Zonal-wind anomalies associated with the thermally triggered SSWs first propagate downward to the high-latitude troposphere after ~2 weeks, before migrating equatorward and stalling at midlatitudes, where they straddle the near-surface jet. After ~3 weeks, the circulation and eddy fluxes associated with thermally triggered SSWs evolve very similarly to SSWs in CTRL, despite the lack of initial planetary wave driving. This suggests that at longer lags, the tropospheric response to SSWs is generic and it is found to be linearly governed by the strength of the lower-stratospheric warming, whereas at shorter lags, the initial formation of the SSW potentially plays a large role in the downward coupling. In agreement with previous studies, synoptic waves are found to play a key role in the persistent tropospheric jet shift at long lags. Synoptic waves appear to respond to the enhanced midlatitude baroclinicity associated with the tropospheric jet shift, and preferentially propagate poleward in an apparent positive feedback with changes in the high-latitude refractive index. 
    more » « less
  2. Abstract

    An intermediate complexity moist general circulation model is used to investigate the sensitivity of the quasi‐biennial oscillation (QBO) to resolution, diffusion, tropical tropospheric waves, and parameterized gravity waves. Finer horizontal resolution is shown to lead to a shorter period, while finer vertical resolution is shown to lead to a longer period and to a larger amplitude in the lowermost stratosphere. More scale‐selective diffusion leads to a faster and stronger QBO, while enhancing the sources of tropospheric stationary wave activity leads to a weaker QBO. In terms of parameterized gravity waves, broadening the spectral width of the source function leads to a longer period and a stronger amplitude although the amplitude effect saturates in the mid‐stratosphere when the half‐width exceedsm/s. A stronger gravity wave source stress leads to a faster and stronger QBO, and a higher gravity wave launch level leads to a stronger QBO. All of these sensitivities are shown to result from their impact on the resultant wave‐driven momentum torque in the tropical stratosphere. Atmospheric models have struggled to accurately represent the QBO, particularly at moderate resolutions ideal for long climate integrations. In particular, capturing the amplitude and penetration of QBO anomalies into the lower stratosphere (which has been shown to be critical for the tropospheric impacts) has proven a challenge. The results provide a recipe to generate and/or improve the simulation of the QBO in an atmospheric model.

     
    more » « less