skip to main content


Search for: All records

Creators/Authors contains: "Rapp, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nanocrystalline olivine-structured Mg2SiO4 and MgCoSiO4, with an average particle size of 27 nm and 31 nm, respectively, were successfully synthesized from oxide precursors via mechanochemical methods. The two nanocrystalline products were obtained after milling for 360 min and displayed high concentrations of Mg2SiO4 (>94%) and MgCoSiO4 (>95%), together with minor amounts of WC (~3%) contaminant originating as debris abraded off milling balls and chambers. The macroscopic temperature monitoring of the grinding jars during milling trials recorded a peak temperature of 75 °C. A combination of analytical techniques that included XRD, TEM, SAED, and EDS were employed for the characterization of the synthesized products. 
    more » « less
  2. Co 2 SiO 4 is a ceramic pigment and promising battery material of significant technological interest, as well as a model end-member of one of the most important mineral families in the Earth's crust and upper mantle. All previously developed methods for synthesis of Co 2 SiO 4 require high-temperature processing, which promotes grain growth, while the nanocrystalline form is required for some important technological applications. Here, we report a successful method for synthesizing nanocrystalline Co 2 SiO 4 via a simple and inexpensive high-energy ball milling mechanochemical process. Products of the synthesis were characterized by a combination of XRD and TEM, and their crystal structures and elemental compositions are reported. 
    more » « less
  3. Making consistent and precise octahedral pressure media is crucial for reproducible high-pressure experiments in the multi-anvil press. Here we report a new approach of casting octahedra using 3D-printed molds, and pressure calibrations for octahedra both with and without pre-existing gaskets (“fins”). The 3D-printed molds for casting octahedra from either Ceramacast 584-OF or 646 cement improve the reproducibility of the octahedra and allow for a pre-existing central hole (for the high-pressure cell assembly) in the final cast product. Pressure and temperature calibrations of the octahedra have been performed based on phase transitions in bismuth (Bi) and silica (SiO2), respectively, in order to determine the efficiency and reproducibility of pressure generation and thermal insulation for cast octahedra designed for use with 18/12, 14/8, and 10/5 multi-anvil assemblies. The pressure-generating efficiency of the 14/8 and 10/5 octahedra with pre-existing gaskets, cast from the 584-OF cement, is similar to that of the corresponding COMPRES (Consortium for Materials Properties Research in Earth Sciences) octahedra, and more efficient than pre-cast octahedra made from the same material but lacking pre-existing gaskets. The efficiency of pre-gasketed 18/12 octahedra made of the 646 cement is markedly lower than those of the 584 cement. However, the 18/12 large-volume octahedra, cast (with fins) from the ZrO2-based 646 cement, also provides efficient thermal insulation. Casting octahedral solid pressure media for multi-anvil experiments using 3D-printed “injection” molds is a low-cost and low failure-rate alternative for conducting reproducible experiments at high pressure in the multi-anvil apparatus. 
    more » « less
  4. Abstract

    Iron‐dominant metallic phases are likely the primary hosts for nitrogen in the reduced deep Earth, hence the storage of nitrogen in the lower mantle and the core is governed by the behavior of the Fe‐N‐C system at high temperatures and pressures. In this study, phase transitions and thermoelastic properties of iron carbonitrides were investigated at high pressure‐temperature conditions by diamond anvil cell experiments and first‐principles calculations. Experimental data revealed no phase transition inε‐type Fe4(N0.6C0.4) or Fe7(N0.75C0.25)3up to 60 GPa at room temperature. At high temperature, Fe7(N0.75C0.25)3transforms into the Fe3C‐type phase at ∼27 GPa, and then into the Fe7C3‐type phase at ∼45 GPa, which is also corroborated by our theoretical calculations. We found that the phase stability of iron carbonitrides mainly depends on the N/C ratio, and the elastic properties of iron carbonitrides are dominantly affected by the Fe/(N+C) ratio. Iron carbonitrides with diverse structures may be the main host for nitrogen in the deep mantle. Some iron carbonitride inclusions in lower mantle diamonds could be the residue of the primordial mantle or originate from subducted nitrogen‐bearing materials, rather than iron‐enriched phases of the outer core. In addition, our experiments confirmed the existence of Fe7C3‐type Fe7C3‐Fe7N3solid solutions above 40 GPa. Fe7C3‐type Fe7(C, N)3has comparable density and thermoelastic properties to its isostructural endmembers and may be a promising candidate constituent of the Earth's inner core.

     
    more » « less