skip to main content


Search for: All records

Creators/Authors contains: "Raymond, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Heavy ion signatures of coronal mass ejections (CMEs) indicate that rapid and strong heating takes place during the eruption and early stages of propagation. However, the nature of the heating that produces the highly ionized charge states often observed in situ is not fully constrained. An MHD simulation of the Bastille Day CME serves as a test bed to examine the origin and conditions of the formation of heavy ions evolving within the CME in connection with those observed during its passage at L1. In particular, we investigate the bimodal nature of the Fe charge state distribution, which is a quintessential heavy ion signature of CME substructure, as well as the source of the highly ionized plasma. We find that the main heating experienced by the tracked plasma structures linked to the ion signatures examined is due to field-aligned thermal conduction via shocked plasma at the CME front. Moreover, the bimodal Fe distributions can be generated through significant heating and rapid cooling of prominence material. However, although significant heating was achieved, the highest ionization stages of Fe ions observed in situ were not reproduced. In addition, the carbon and oxygen charge state distributions were not well replicated owing to anomalous heavy ion dropouts observed throughout the ejecta. Overall, the results indicate that additional ionization is needed to match observation. An important driver of ionization could come from suprathermal electrons, such as those produced via Fermi acceleration during reconnection, suggesting that the process is critical to the development and extended heating of extreme CME eruptions, like the Bastille Day CME. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Abstract

    The proximity and duration of the tidal disruption event ASASSN-14li led to the discovery of narrow, blueshifted absorption lines in X-rays and UV. The gas seen in X-ray absorption is consistent with bound material close to the apocenter of elliptical orbital paths, or with a disk wind similar to those seen in Seyfert-1 active galactic nuclei. We present a new analysis of the deepest high-resolution XMM-Newton and Chandra spectra of ASASSN-14li. Driven by the relative strengths of He-like and H-like charge states, the data require [N/C] ≥ 2.4, in qualitative agreement with UV spectral results. Flows of the kind seen in the X-ray spectrum of ASASSN-14li were not clearly predicted in simulations of TDEs; this left open the possibility that the observed absorption might be tied to gas released in prior active galactic nucleus (AGN) activity. However, the abundance pattern revealed in this analysis points to a single star rather than a standard AGN accretion flow comprised of myriad gas contributions. The simplest explanation of the data is likely that a moderately massive star (M≳ 3M) with significant CNO processing was disrupted. An alternative explanation is that a lower mass star was disrupted that had previously been stripped of its envelope. We discuss the strengths and limitations of our analysis and these interpretations.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Abstract

    Nonequilibrium ionization (NEI) is essentially required for astrophysical plasma diagnostics once the plasma status departs from the assumption of ionization equilibrium. In this work, we perform fast NEI calculations combined with magnetohydrodynamic (MHD) simulations and analyze the ionization properties of a Petschek-type magnetic reconnection current sheet during solar eruptions. Our simulation reveals Petschek-type slow-mode shocks in the classical Spitzer thermal conduction models and conduction flux-limitation situations. The results show that under-ionized features can be commonly found in shocked reconnection outflows and thermal halo regions outside the shocks. The departure from equilibrium ionization strongly depends on plasma density. In addition, this departure is sensitive to the observable target temperature: the high-temperature iron ions are strongly affected by the effects of NEI. The under-ionization also affects the synthetic SDO/AIA intensities, which indicates that the reconstructed hot reconnection current sheet structure may be significantly underestimated either for temperature or apparent width. We also perform an MHD-NEI analysis on the reconnection current sheet in the classical solar flare geometry. Finally, we show the potential reversal between the under-ionized and over-ionized states at the lower tip of reconnection current sheets where the downward outflow collides with closed magnetic loops, which can strongly affect multiple SDO/AIA band ratios along the reconnection current sheet.

     
    more » « less
  5. Community honours, such as those bestowed by professional scientific societies like the American Geophysical Union (AGU) are an important element of both individual career advancement and contributes to the historical record of scientific progress. The process by which honours are bestowed is not widely shared amongst the community. The purpose of this article is to share the recent experiences of several members of the AGU Space Physics and Aeronomy (SPA) Fellows committee. We outline the criteria for selection, the evaluation process, difficulties encountered by the committee, and steps taken to mitigate these difficulties. Of particular note is the impact of implicit bias in the award system. Steps could be taken by the awarding scientific societies to reduce the impact of these biases, but in the meantime individual award committees can employ some of the strategies we outline in this article. By sharing our experiences, we hope to improve the process of granting awards and honours for the scientists putting together award nominations, future committee members, and the scientific societies granting these awards. 
    more » « less
  6. This paper outlines key scientific topics that are important for the development of solar system physics and how observations of heavy ion composition can address them. The key objectives include, 1) understanding the Sun’s chemical composition by identifying specific mechanisms driving elemental variation in the corona. 2) Disentangling the solar wind birthplace and drivers of release by determining the relative contributions of active regions (ARs), quiet Sun, and coronal hole plasma to the solar wind. 3) Determining the principal mechanisms driving solar wind evolution from the Sun by identifying the importance and interplay of reconnection, waves, and/or turbulence in driving the extended acceleration and heating of solar wind and transient plasma. The paper recommends complementary heavy ion measurements that can be traced from the Sun to the heliosphere to properly connect and study these regions to address these topics. The careful determination of heavy ion and elemental composition of several particle populations, matched at the Sun and in the heliosphere, will permit for a comprehensive examination of fractionation processes, wave-particle interactions, coronal heating, and solar wind release and energization that are key to understanding how the Sun forms and influences the heliosphere. 
    more » « less
  7. The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory/(SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  8. null (Ed.)
  9. null (Ed.)