skip to main content


Search for: All records

Creators/Authors contains: "Raymond, P. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Lakes are central components of the inland water system distinct from, yet inextricably connected to, river networks. Currently, existing network‐scale biogeochemistry research, although robust, typically treats each of these components separately or reductively. Here, we incorporate lake morphometry into a fully connected stream/lake network for the Connecticut River watershed and model potential evasion of terrestrially sourced headwater CO2as transported through the network, ignoring in‐stream production. We found that approximately 25%–30% of total potential soil CO2evasion occurs in lakes, and percent evasion is inversely related to streamflow. A lake's ability to evade CO2is controlled by residence time and size: most lakes with residence time over 7 days or surface area greater than 0.004 km2evade functionally all terrestrial CO2entering from upstream, precluding further downstream transport. We conclude that lakes are important for soil CO2degassing and that this coupled river/lake approach is promising for CO2studies henceforth.

     
    more » « less
  3. Abstract

    Climate change is dramatically altering Arctic ecosystems, leading to shifts in the sources, composition, and eventual fate of riverine dissolved organic matter (DOM) in the Arctic Ocean. Here we examine a 6‐year DOM compositional record from the six major Arctic rivers using Fourier‐transform ion cyclotron resonance mass spectrometry paired with dissolved organic carbon isotope data (Δ14C, δ13C) to investigate how seasonality and permafrost influence DOM, and how DOM export may change with warming. Across the pan‐Arctic, DOM molecular composition demonstrates synchrony and stability. Spring freshet brings recently leached terrestrial DOM with a latent high‐energy and potentially bioavailable subsidy, reconciling the historical paradox between freshet DOM's terrestrial bulk signatures and high biolability. Winter features undiluted baseflow DOM sourced from old, microbially degraded groundwater DOM. A stable core Arctic riverine fingerprint (CARF) is present in all samples and may contribute to the potential carbon sink of persistent, aged DOM in the global ocean. Future warming may lead to shifting sources of DOM and export through: (1) flattening Arctic hydrographs and earlier melt modifying the timing and role of the spring high‐energy subsidy; (2) increasing groundwater discharge resulting in a greater fraction of DOM export to the ocean occurring as stable and aged molecules; and (3) increasing contribution of nitrogen/sulfur‐containing DOM from microbial degradation caused by increased connectivity between groundwater and surface waters due to permafrost thaw. Our findings suggest the ubiquitous CARF (which may contribute to oceanic carbon sequestration) underlies predictable variations in riverine DOM composition caused by seasonality and permafrost extent.

     
    more » « less
  4. Abstract

    We synthesized N2O emissions over North America using 17 bottom‐up (BU) estimates from 1980–2016 and five top‐down (TD) estimates from 1998 to 2016. The BU‐based total emission shows a slight increase owing to U.S. agriculture, while no consistent trend is shown in TD estimates. During 2007–2016, North American N2O emissions are estimated at 1.7 (1.0–3.0) Tg N yr−1(BU) and 1.3 (0.9–1.5) Tg N yr−1(TD). Anthropogenic emissions were twice as large as natural fluxes from soil and water. Direct agricultural and industrial activities accounted for 68% of total anthropogenic emissions, 71% of which was contributed by the U.S. Our estimates of U.S. agricultural emissions are comparable to the EPA greenhouse gas (GHG) inventory, which includes estimates from IPCC tier 1 (emission factor) and tier 3 (process‐based modeling) approaches. Conversely, our estimated agricultural emissions for Canada and Mexico are twice as large as the respective national GHG inventories.

     
    more » « less
  5. Abstract

    Drought is common in rivers, yet how this disturbance regulates metabolic activity across network scales is largely unknown. Drought often lowers gross primary production (GPP) and ecosystem respiration (ER) in small headwaters but by contrast can enhance GPP and cause algal blooms in downstream estuaries. We estimated ecosystem metabolism across a nested network of 13 reaches from headwaters to the main stem of the Connecticut River from 2015 through 2017, which encompassed a pronounced drought. During drought, GPP and ER increased, but with greater enhancement in larger rivers. Responses of GPP and ER were partially due to warmer temperatures associated with drought, particularly in the larger rivers where temperatures during summer drought were > 10°C higher than typical summer baseflow. The larger rivers also had low canopy cover, which allowed primary producers to take advantage of lower turbidity and fewer cloudy days during drought. We conclude that GPP is enhanced by higher temperature, lower turbidity, and longer water residence times that are all a function of low discharge, but ecosystem response in temperate watersheds to these drivers depends on light availability regulated by riparian canopy cover. In larger rivers, GPP increased more than ER during drought, even leading to temporary autotrophy, an otherwise rare event in the typically light‐limited heterotrophic Connecticut River main stem. With climate change, rivers and streams may become warmer and drought frequency and severity may increase. Such changes may increase autotrophy in rivers with broad implications for carbon cycling and water quality in aquatic ecosystems.

     
    more » « less