skip to main content


Search for: All records

Creators/Authors contains: "Ren, Yili"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 9, 2024
  2. Earables (ear wearables) are rapidly emerging as a new platform encompassing a diverse range of personal applications. The traditional authentication methods hence become less applicable and inconvenient for earables due to their limited input interface. Nevertheless, earables often feature rich around-the-head sensing capability that can be leveraged to capture new types of biometrics. In this work, we propose ToothSonic that leverages the toothprint-induced sonic effect produced by a user performing teeth gestures for earable authentication. In particular, we design representative teeth gestures that can produce effective sonic waves carrying the information of the toothprint. To reliably capture the acoustic toothprint, it leverages the occlusion effect of the ear canal and the inward-facing microphone of the earables. It then extracts multi-level acoustic features to reflect the intrinsic toothprint information for authentication. The key advantages of ToothSonic are that it is suitable for earables and is resistant to various spoofing attacks as the acoustic toothprint is captured via the user's private teeth-ear channel that modulates and encrypts the sonic waves. Our experiment studies with 25 participants show that ToothSonic achieves up to 95% accuracy with only one of the users' tooth gestures. 
    more » « less
  3. This paper presents GoPose, a 3D skeleton-based human pose estimation system that uses WiFi devices at home. Our system leverages the WiFi signals reflected off the human body for 3D pose estimation. In contrast to prior systems that need specialized hardware or dedicated sensors, our system does not require a user to wear or carry any sensors and can reuse the WiFi devices that already exist in a home environment for mass adoption. To realize such a system, we leverage the 2D AoA spectrum of the signals reflected from the human body and the deep learning techniques. In particular, the 2D AoA spectrum is proposed to locate different parts of the human body as well as to enable environment-independent pose estimation. Deep learning is incorporated to model the complex relationship between the 2D AoA spectrums and the 3D skeletons of the human body for pose tracking. Our evaluation results show GoPose achieves around 4.7cm of accuracy under various scenarios including tracking unseen activities and under NLoS scenarios. 
    more » « less