skip to main content


Search for: All records

Creators/Authors contains: "Rios-Berrios, Rosimar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tropical weather phenomena—including tropical cyclones (TCs) and equatorial waves—are influenced by planetary‐to‐convective‐scale processes; yet, existing data sets and tools can only capture a subset of those processes. This study introduces a convection‐permitting aquaplanet simulation that can be used as a laboratory to study TCs, equatorial waves, and their interactions. The simulation was produced with the Model for Prediction Across Scales‐Atmosphere (MPAS‐A) using a variable resolution mesh with convection‐permitting resolution (i.e., 3‐km cell spacing) between 10°S and 30°N. The underlying sea‐surface temperature is given by a zonally symmetric profile with a peak at 10°N, which allows for the formation of TCs. A comparison between the simulation and satellite, reanalysis, and airborne dropsonde data is presented to determine the realism of the simulated phenomena. The simulation captures a realistic TC intensity distribution, including major hurricanes, but their lifetime maximum intensities may be limited by the stronger vertical wind shear in the simulation compared to the observed tropical Pacific region. The simulation also captures convectively coupled equatorial waves, including Kelvin waves and easterly waves. Despite the idealization of the aquaplanet setup, the simulated three‐dimensional structure of both groups of waves is consistent with their observed structure as deduced from satellite and reanalysis data. Easterly waves, however, have peak rotation and meridional winds at a slightly higher altitude than in the reanalysis. Future studies may use this simulation to understand how convectively coupled equatorial waves influence the multi‐scale processes leading to tropical cyclogenesis.

     
    more » « less
  2. Abstract

    Tropical cyclone (TC) structure and intensity are strongly modulated by interactions with deep-layer vertical wind shear (VWS)—the vector difference between horizontal winds at 200 and 850 hPa. This paper presents a comprehensive review of more than a century of research on TC–VWS interactions. The literature broadly agrees that a TC vortex becomes vertically tilted, precipitation organizes into a wavenumber-1 asymmetric pattern, and thermal and kinematic asymmetries emerge when a TC encounters an environmental sheared flow. However, these responses depend on other factors, including the magnitude and direction of horizontal winds at other vertical levels between 200 and 850 hPa, the amount and location of dry environmental air, and the underlying sea surface temperature. While early studies investigated how VWS weakens TCs, an emerging line of research has focused on understanding how TCs intensify under moderate and strong VWS (i.e., shear magnitudes greater than 5 m s−1). Modeling and observational studies have identified four pathways to intensification: vortex tilt reduction, vortex reformation, axisymmetrization of precipitation, and outflow blocking. These pathways may not be uniquely different because convection and vortex asymmetries are strongly coupled to each other. In addition to discussing these topics, this review presents open questions and recommendations for future research on TC–VWS interactions.

     
    more » « less
  3. Abstract

    Numerical weather and climate models continue to struggle with simulating equatorial waves and tropical rainfall variability. This study presents a potential remedy—high‐resolution global models with explicitly resolved convection. A series of global nonhydrostatic simulations was produced with horizontal cell spacings between 3.75 and 480 km; the share of resolved precipitation in these simulations ranged from 88% to 2%. The simulations in which convection was mostly resolved produced much more realistic equatorial waves than the simulations in which convection was mostly parameterized. Consequently, the simulations with resolved convection produced more realistic precipitation patterns and precipitation variances. The results demonstrate that high‐resolution global models with explicitly resolved convection are a promising tool to improve tropical weather forecasts and climate projections.

     
    more » « less
  4. Abstract

    This study investigates the effects of resolved deep convection on tropical rainfall and its multi‐scale variability. A series of aquaplanet simulations are analyzed using the Model for Prediction Across Scales‐Atmosphere with horizontal cell spacings from 120 to 3 km. The 3‐km experiment uses a novel configuration with 3‐km cell spacing between 20°S and 20°N and 15‐km cell spacing poleward of 30°N/S. A comparison of those experiments shows that resolved deep convection yields a narrower, stronger, and more equatorward intertropical convergence zone, which is supported by stronger nonlinear horizontal momentum advection in the boundary layer. There is also twice as much tropical rainfall variance in the experiment with resolved deep convection than in the experiments with parameterized convection. All experiments show comparable precipitation variance associated with Kelvin waves; however, the experiment with resolved deep convection shows higher precipitation variance associated with westward propagating systems. Resolved deep convection also yields at least two orders of magnitude more frequent heavy rainfall rates (>2 mm hr−1) than the experiments with parameterized convection. A comparison of organized precipitation systems demonstrates that tropical convection organizes into linear systems that are associated with stronger and deeper cold pools and upgradient convective momentum fluxes when convection is resolved. In contrast, parameterized convection results in more circular systems, weaker cold pools, and downgradient convective momentum fluxes. These results suggest that simulations with parameterized convection are missing an important feedback loop between the mean state, convective organization, and meridional gradients of moisture and momentum.

     
    more » « less
  5. Abstract

    The impact of low-level flow (LLF) direction on the intensification of intense tropical cyclones under moderate deep-layer shear is investigated based on idealized numerical experiments. The background flow profiles are constructed by varying the LLF direction with the same moderate deep-layer shear. When the maximum surface wind speed of the simulation without background flow reaches 70 kt (36 m s−1), the background flow profiles are imposed. After a weakening period in the first 12 h, the members with upshear-left-pointing LLF (fast-intensifying group) intensify faster between 12 and 24 h than those members (slow-intensifying group) with downshear-right-pointing LLF. The fast-intensifying group experiences earlier development of inner-core structures after 12 h, such as potential vorticity below the midtroposphere, upper-level warm core, eyewall axisymmetrization, and radial moist entropy gradient, while the inner-core features of the slow-intensifying group remain relatively weak and asymmetric. The FI group experiences smaller tilt increase and stronger midlevel PV ring development. The upshear-left convection during 6–12 h is responsible for the earlier development of the inner core by reducing ventilation, providing axisymmetric heating, and benefiting the eyewall development. The LLF of the fast-intensifying group enhances surface heat fluxes in the downshear side, resulting in higher energy supply to the upshear-left convection from the boundary layer. In all, this study provides new insights on the impact of LLF direction on intense storms under moderate shear by modulating the surface heat fluxes and eyewall convection.

     
    more » « less
  6. Abstract

    Idealized numerical simulations of weak tropical cyclones (e.g., tropical depressions and tropical storms) in sheared environments indicate that vortex tilt reduction and convective symmetrization are key structural changes that can precede intensification. Through a series of ensembles of idealized numerical simulations, this study demonstrates that including radiation in the simulations affects the timing and variability of those structural changes. The underlying reason for those effects is a background thermodynamic profile with reduced energy available to fuel strong downdrafts; such a profile leads to weaker lower-tropospheric ventilation, greater azimuthal coverage of clouds and precipitation, and smaller vortex tilt with radiation. Consequently, the simulations with radiation allow for earlier intensification at stronger shear magnitudes than without radiation. An unexpected finding from this work is a reduction of both vortex tilt and intensity variability with radiation in environments with 5 m s−1 deep-layer shear. This reduction stems from reduced variability in nonlinear feedbacks between lower-tropospheric ventilation, cold pools, convection, and vortex tilt. Sensitivity experiments confirm the relationship between those processes and suggest that microphysical processes (e.g., rain evaporation) are major sources of uncertainty in the representation of weak, sheared tropical cyclones in numerical weather prediction models.

     
    more » « less
  7. Abstract

    The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations.

     
    more » « less