skip to main content


Search for: All records

Creators/Authors contains: "Rivera, Hanny E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zamudio, Kelly (Ed.)
    Heterotrophy has been shown to mitigate coral–algal dysbiosis (coral bleaching) under heat challenge, but the molecular mechanisms underlying this phenomenon remain largely unexplored. Here, we quantified coral physiology and gene expression of fragments from 13 genotypes of symbiotic Oculina arbuscula after a 28-d feeding experiment under (1) fed, ambient (24 °C); (2) unfed, ambient; (3) fed, heated (ramp to 33 °C); and (4) unfed, heated treatments. We monitored algal photosynthetic efficiency throughout the experiment, and after 28 d, profiled coral and algal carbohydrate and protein reserves, coral gene expression, algal cell densities, and chlorophyll-a and chlorophyll-c2 pigments. Contrary to previous findings, heterotrophy did little to mitigate the impacts of temperature, and we observed few significant differences in physiology between fed and unfed corals under heat challenge. Our results suggest the duration and intensity of starvation and thermal challenge play meaningful roles in coral energetics and stress response; future work exploring these thresholds and how they may impact coral responses under changing climate is urgently needed. Gene expression patterns under heat challenge in fed and unfed corals showed gene ontology enrichment patterns consistent with classic signatures of the environmental stress response. While gene expression differences between fed and unfed corals under heat challenge were subtle: Unfed, heated corals uniquely upregulated genes associated with cell cycle functions, an indication that starvation may induce the previously described, milder “type B” coral stress response. Future studies interested in disentangling the influence of heterotrophy on coral bleaching would benefit from leveraging the facultative species studied here, but using the coral in its symbiotic and aposymbiotic states.

     
    more » « less
  2. Abstract Ocean warming is killing corals, but heat-tolerant populations exist; if protected, they could replenish affected reefs naturally or through restoration. Palau’s Rock Islands experience consistently higher temperatures and extreme heatwaves, yet their diverse coral communities bleach less than those on Palau’s cooler outer reefs. Here, we combined genetic analyses, bleaching histories and growth rates of Porites cf. lobata colonies to identify thermally tolerant genotypes, map their distribution, and investigate potential growth trade-offs. We identified four genetic lineages of P . cf. lobata . On Palau’s outer reefs, a thermally sensitive lineage dominates. The Rock Islands harbor two lineages with enhanced thermal tolerance; one of which shows no consistent growth trade-off and also occurs on several outer reefs. This suggests that the Rock Islands provide naturally tolerant larvae to neighboring areas. Finding and protecting such sources of thermally-tolerant corals is key to reef survival under 21 st century climate change. 
    more » « less
  3. Abstract

    Genomic methods are becoming increasingly valuable and established in ecological research, particularly in nonmodel species. Supporting their progress and adoption requires investment in resources that promote (i) reproducibility of genomic analyses, (ii) accessibility of learning tools and (iii) keeping pace with rapidly developing methods and principles.

    We introduce marineomics.io, an open‐source, living document to disseminate tutorials, reproducibility tools and best principles for ecological genomic research in marine and nonmodel systems.

    The website's existing content spans population and functional genomics, including current recommendations for whole‐genome sequencing, RAD‐seq, Pool‐seq and RNA‐seq. With the goal to facilitate the development of new, similar resources, we describe our process for aggregating and synthesizing methodological principles from the ecological genomics community to inform website content. We also detail steps for authorship and submission of new website content, as well as protocols for providing feedback and topic requests from the community.

    These web resources were constructed with guidance for doing rigorous, reproducible science. Collaboration and contributions to the website are encouraged from scientists of all skill sets and levels of expertise.

     
    more » « less
  4. Abstract

    The oceans are warming and coral reefs are bleaching with increased frequency and severity, fueling concerns for their survival through this century. Yet in the central equatorial Pacific, some of the world’s most productive reefs regularly experience extreme heat associated with El Niño. Here we use skeletal signatures preserved in long-lived corals on Jarvis Island to evaluate the coral community response to multiple successive heatwaves since 1960. By tracking skeletal stress band formation through the 2015-16 El Nino, which killed 95% of Jarvis corals, we validate their utility as proxies of bleaching severity and show that 2015-16 was not the first catastrophic bleaching event on Jarvis. Since 1960, eight severe (>30% bleaching) and two moderate (<30% bleaching) events occurred, each coinciding with El Niño. While the frequency and severity of bleaching on Jarvis did not increase over this time period, 2015–16 was unprecedented in magnitude. The trajectory of recovery of this historically resilient ecosystem will provide critical insights into the potential for coral reef resilience in a warming world.

     
    more » « less