skip to main content


Search for: All records

Creators/Authors contains: "Roald, Line A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available October 15, 2024
  4. Electric power infrastructure has ignited several of the most destructive wildfires in recent history. Preemptive power shutoffs are an effective tool to mitigate the risk of ignitions from power lines, but at the same time can cause widespread power outages. This work proposes a mathematical optimization problem to help utilities decide where and when to implement these shutoffs, as well as how to most efficiently restore power once the wildfire risk is lower. Specifically, our model co-optimizes the power shutoff (considering both wildfire risk reduction and power outages) as well as the post-event restoration efforts given constraints related to inspection and energization of lines, and is implemented as a rolling horizon optimization problem that is resolved whenever new forecasts of load and wildfire risk become available. We demonstrate our method on the IEEE RTS-GMLC test case using real wildfire risk data and forecasts from US Geological Survey, and investigate the sensitivity of the results to the forecast quality, decision horizon and system restoration budget. The software implementation is available in the open source software package PowerModels Wildfire.jl. 
    more » « less
    Free, publicly-accessible full text available June 25, 2024
  5. Growing penetrations of single-phase distributed generation such as rooftop solar photovoltaic (PV) systems can increase voltage unbalance in distribution grids. However, PV systems are also capable of providing reactive power compensation to reduce unbalance. In this paper, we compare two methods to mitigate voltage unbalance with solar PV inverters: a centralized optimization-based method utilizing a three-phase optimal power flow formulation and a distributed approach based on Steinmetz design. While the Steinmetz-based method is computationally simple and does not require extensive communication or full network data, it generally leads to less unbalance improvement and more voltage constraint violations than the optimization-based method. In order to improve the performance of the Steinmetz-based method without adding the full complexity of the optimization-based method, we propose an integrated method that incorporates design parameters computed from the set-points generated by the optimization-based method into the Steinmetz-based method. We test and compare all methods on a large three-phase distribution feeder with time-varying load and PV data. The simulation results indicate trade-offs between the methods in terms of computation time, voltage unbalance reduction, and constraint violations. We find that the integrated method can provide a good balance between performance and information/communication requirements. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024