skip to main content


Search for: All records

Creators/Authors contains: "Robinson, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The most luminous quasars are created by major, gas-rich mergers and E1821+643, an optically luminous quasar situated at the centre of a cool-core cluster, appears to be in the late stages of the post-merger blowout phase. This quasar is also identified as a gravitational recoil candidate, in which the supermassive black hole (SMBH) has received a recoil kick due to anisotropic emission of gravitational waves during the coalescence of a progenitor SMBH binary. We analyse long-slit spectra of the extended, ionized gas surrounding E1821+643 to study its kinematics and ionization. We have identified three kinematically distinct components, which we associate, respectively, with a wide-angle polar wind from the nucleus, kinematically undisturbed gas, and a redshifted arc-like structure of gas, at a distance of 3–4 arcsec (13–18 kpc) from the nucleus. The latter component coincides with the northern and eastern extremities of an arc of [O iii] emission seen in HST images. This feature could trace a tidal tail originating from a merger with a gas-rich galaxy to the south-east of the nucleus, whose presence has been inferred by Aravena et al. from the detection of CO emission. Alternatively, the arc could be the remnant of a shell of gas swept up by a powerful quasar wind. The emission-line ratios of the extended gas are consistent with photoionization by the quasar, but a contribution from radiative shocks cannot be excluded.

     
    more » « less
  2. We report on progress in the understanding of the effects of kilotesla-level applied magnetic fields on relativistic laser–plasma interactions. Ongoing advances in magnetic-field–generation techniques enable new and highly desirable phenomena, including magnetic-field–amplification platforms with reversible sign, focusing ion acceleration, and bulk-relativistic plasma heating. Building on recent advancements in laser–plasma interactions with applied magnetic fields, we introduce simple models for evaluating the effects of applied magnetic fields in magnetic-field amplification, sheath-based ion acceleration, and direct laser acceleration. These models indicate the feasibility of observing beneficial magnetic-field effects under experimentally relevant conditions and offer a starting point for future experimental design. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    The formation and evolution of post-solitons has been discussed for quite some time both analytically and through the use of particle-in-cell (PIC) codes. It is however only recently that they have been directly observed in laser-plasma experiments. Relativistic electromagnetic (EM) solitons are localised structures that can occur in collisionless plasmas. They consist of a low-frequency EM wave trapped in a low electron number-density cavity surrounded by a shell with a higher electron number-density. Here we describe the results of an experiment in which a 100 TW Ti:sapphire laser (30 fs, 800 nm) irradiates a0.03gcm3TMPTA foam target with a focused intensityIl=9.5×1017Wcm2. A third harmonic (λprobe266nm) probe is employed to diagnose plasma motion for 25 ps after the main pulse interaction via Doppler-Spectroscopy. Both radiation-hydrodynamics and 2D PIC simulations are performed to aid in the interpretation of the experimental results. We show that the rapid motion of the probe critical-surface observed in the experiment might be a signature of post-soliton wall motion.

     
    more » « less