skip to main content


Search for: All records

Creators/Authors contains: "Rodgers, Keith B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change projections consistently demonstrate that warming temperatures and dwindling seasonal snowpack will elicit cascading effects on ecosystem function and water resource availability. Despite this consensus, little is known about potential changes in the variability of ecohydrological conditions, which is also required to inform climate change adaptation and mitigation strategies. Considering potential changes in ecohydrological variability is critical to evaluating the emergence of trends, assessing the likelihood of extreme events such as floods and droughts, and identifying when tipping points may be reached that fundamentally alter ecohydrological function. Using a single-model Large Ensemble with sophisticated terrestrial ecosystem representation, we characterize projected changes in the mean state and variability of ecohydrological processes in historically snow-dominated regions of the Northern Hemisphere. Widespread snowpack reductions, earlier snowmelt timing, longer growing seasons, drier soils, and increased fire risk are projected for this century under a high-emissions scenario. In addition to these changes in the mean state, increased variability in winter snowmelt will increase growing-season water deficits and increase the stochasticity of runoff. Thus, with warming, declining snowpack loses its dependable buffering capacity so that runoff quantity and timing more closely reflect the episodic characteristics of precipitation. This results in a declining predictability of annual runoff from maximum snow water equivalent, which has critical implications for ecosystem stress and water resource management. Our results suggest that there is a strong likelihood of pervasive alterations to ecohydrological function that may be expected with climate change. 
    more » « less
  2. Abstract

    Single-forcing large ensembles are a relatively new tool for quantifying the contributions of different anthropogenic and natural forcings to the historical and future projected evolution of the climate system. This study introduces a new single-forcing large ensemble with the Community Earth System Model, version 2 (CESM2), which can be used to separate the influences of greenhouse gases, anthropogenic aerosols, biomass burning aerosols, and all remaining forcings on the evolution of the Earth system from 1850 to 2050. Here, the forced responses of global near-surface temperature and associated drivers are examined in CESM2 and compared with those in a single-forcing large ensemble with CESM2’s predecessor, CESM1. The experimental design, the imposed forcing, and the model physics all differ between the CESM1 and CESM2 ensembles. In CESM1, an “all-but-one” approach was used whereby everything except the forcing of interest is time evolving, while in CESM2 an “only” approach is used, whereby only the forcing of interest is time evolving. This experimental design choice is shown to matter considerably for anthropogenic aerosol-forced change in CESM2, due to state dependence of cryospheric albedo feedbacks and nonlinearity in the Atlantic meridional overturning circulation (AMOC) response to forcing. This impact of experimental design is, however, strongly dependent on the model physics and/or the imposed forcing, as the same sensitivity to experimental design is not found in CESM1, which appears to be an inherently less nonlinear model in both its AMOC behavior and cryospheric feedbacks.

     
    more » « less
  3. Abstract

    Biomass burning aerosol (BBA) emissions in the Coupled Model Intercomparison Project phase 6 (CMIP6) historical forcing fields have enhanced temporal variability during the years 1997–2014 compared to earlier periods. Recent studies document that the corresponding inhomogeneous shortwave forcing over this period can cause changes in clouds, permafrost, and soil moisture, which contribute to a net terrestrial Northern Hemisphere warming relative to earlier periods. Here, we investigate the ocean response to the hemispherically asymmetric warming, using a 100-member ensemble of the Community Earth System Model version 2 Large Ensemble forced by two different BBA emissions (CMIP6 default and temporally smoothed over 1990–2020). Differences between the two subensemble means show that ocean temperature anomalies occur during periods of high BBA variability and subsequently persist over multiple decades. In the North Atlantic, surface warming is efficiently compensated for by decreased northward oceanic heat transport due to a slowdown of the Atlantic meridional overturning circulation. In the North Pacific, surface warming is compensated for by an anomalous cross-equatorial cell (CEC) that reduces northward oceanic heat transport. The heat that converges in the South Pacific through the anomalous CEC is shunted into the subsurface and contributes to formation of long-lasting ocean temperature anomalies. The anomalous CEC is maintained through latitude-dependent contributions from narrow western boundary currents and basinwide near-surface Ekman transport. These results indicate that interannual variability in forcing fields may significantly change the background climate state over long time scales, presenting a potential uncertainty in CMIP6-class climate projections forced without interannual variability.

     
    more » « less
  4. null (Ed.)
  5. Abstract

    This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1based on an ensemble of reconstructions of the history of sea surface pCO2(pCO2products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2‐driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate‐forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate‐driven variability exceeding the CO2‐forced variability by 2–3 times. These results suggest that anthropogenic CO2dominates the ocean CO2sink, while climate‐driven variability is potentially large but highly uncertain and not consistently captured across different methods.

     
    more » « less
  6. The oceanic response to recent tropical eruptions is examined in Large Ensemble (LE) experiments from two fully coupled global climate models, the Community Earth System Model (CESM) and the Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2M), each forced by a distinct volcanic forcing dataset. Following the simulated eruptions of Agung, El Chichón, and Pinatubo, the ocean loses heat and gains oxygen and carbon, in general agreement with available observations. In both models, substantial global surface cooling is accompanied by El Niño–like equatorial Pacific surface warming a year after the volcanic forcing peaks. A mechanistic analysis of the CESM and ESM2M responses to Pinatubo identifies remote wind forcing from the western Pacific as a major driver of this El Niño–like response. Following eruption, faster cooling over the Maritime Continent than adjacent oceans suppresses convection and leads to persistent westerly wind anomalies over the western tropical Pacific. These wind anomalies excite equatorial downwelling Kelvin waves and the upwelling of warm subsurface anomalies in the eastern Pacific, promoting the development of El Niño conditions through Bjerknes feedbacks a year after eruption. This El Niño–like response drives further ocean heat loss through enhanced equatorial cloud albedo, and dominates global carbon uptake as upwelling of carbon-rich waters is suppressed in the tropical Pacific. Oxygen uptake occurs primarily at high latitudes, where surface cooling intensifies the ventilation of subtropical thermocline waters. These volcanically forced ocean responses are large enough to contribute to the observed decadal variability in oceanic heat, carbon, and oxygen.

     
    more » « less
  7. Abstract

    The air‐sea exchange of oxygen (O2) is driven by changes in solubility, biological activity, and circulation. The total air‐sea exchange of O2has been shown to be closely related to the air‐sea exchange of heat on seasonal timescales, with the ratio of the seasonal flux of O2to heat varying with latitude, being higher in the extratropics and lower in the subtropics. This O2/heat ratio is both a fundamental biogeochemical property of air‐sea exchange and a convenient metric for testing earth system models. Current estimates of the O2/heat flux ratio rely on sparse observations of dissolved O2, leaving it fairly unconstrained. From a model ensemble we show that the ratio of the seasonal amplitude of two atmospheric tracers, atmospheric potential oxygen (APO) and the argon‐to‐nitrogen ratio (Ar/O2), exhibits a close relationship to the O2/heat ratio of the extratropics (40–). The amplitude ratio,/, is relatively constant within the extratropics of each hemisphere due to the zonal mixing of the atmosphere./is not sensitive to atmospheric transport, as most of the observed spatial variability in the seasonal amplitude ofAPO is compensated by similar variations in(Ar/). From the relationship between/heat and/in the model ensemble, we determine that the atmospheric observations suggest hemispherically distinct/heat flux ratios of 3.30.3 and 4.70.8 nmolbetween 40 andin the Northern and Southern Hemispheres respectively, providing a useful constraint forand heat air‐sea fluxes in earth system models and observation‐based data products.

     
    more » « less
  8. Abstract

    Anthropogenically forced changes in ocean biogeochemistry are underway and critical for the ocean carbon sink and marine habitat. Detecting such changes in ocean biogeochemistry will require quantification of the magnitude of the change (anthropogenic signal) and the natural variability inherent to the climate system (noise). Here we use Large Ensemble (LE) experiments from four Earth system models (ESMs) with multiple emissions scenarios to estimate Time of Emergence (ToE) and partition projection uncertainty for anthropogenic signals in five biogeochemically important upper‐ocean variables. We find ToEs are robust across ESMs for sea surface temperature and the invasion of anthropogenic carbon; emergence time scales are 20–30 yr. For the biological carbon pump, and sea surface chlorophyll and salinity, emergence time scales are longer (50+ yr), less robust across the ESMs, and more sensitive to the forcing scenario considered. We find internal variability uncertainty, and model differences in the internal variability uncertainty, can be consequential sources of uncertainty for projecting regional changes in ocean biogeochemistry over the coming decades. In combining structural, scenario, and internal variability uncertainty, this study represents the most comprehensive characterization of biogeochemical emergence time scales and uncertainty to date. Our findings delineate critical spatial and duration requirements for marine observing systems to robustly detect anthropogenic change.

     
    more » « less