skip to main content


Search for: All records

Creators/Authors contains: "Rodrigues, Fabiano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The occurrence of plasma irregularities and ionospheric scintillation over the Caribbean region have been reported in previous studies, but a better understanding of the source and conditions leading to these events is still needed. In December 2021, three ground-based ionospheric scintillation and Total Electron Content monitors were installed at different locations over Puerto Rico to better understand the occurrence of ionospheric irregularities in the region and to quantify their impact on transionospheric signals. Here, the findings for an event that occurred on March 13–14, 2022 are reported. The measurements made by the ground-based instrumentation indicated that ionospheric irregularities and scintillation originated at low latitudes and propagated, subsequently, to mid-latitudes. Imaging of the ionospheric F-region over a wide range of latitudes provided by the GOLD mission confirmed, unequivocally, that the observed irregularities and the scintillation were indeed caused by extreme equatorial plasma bubbles, that is, bubbles that reach abnormally high apex heights. The joint ground- and space-based observations show that plasma bubbles reached apex heights exceeding 2600 km and magnetic dip latitudes beyond 28 ° . In addition to the identification of extreme plasma bubbles as the source of the ionospheric perturbations over low-to-mid latitudes, GOLD observations also provided experimental evidence of the background ionospheric conditions leading to the abnormally high rise of the plasma bubbles and to severe L-band scintillation. These conditions are in good agreement with the theoretical hypothesis previously proposed. Graphical Abstract 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract We introduce a new numerical model developed to assist with Data Interpretation and Numerical Analysis of ionospheric Missions and Observations (DINAMO). DINAMO derives the ionospheric electrostatic potential at low- and mid-latitudes from a two-dimensional dynamo equation and user-specified inputs for the state of the ionosphere and thermosphere (I–T) system. The potential is used to specify the electric fields and associated F -region E × B plasma drifts. Most of the model was written in Python to facilitate the setup of numerical experiments and to engage students in numerical modeling applied to space sciences. Here, we illustrate applications and results of DINAMO in two different analyses. First, DINAMO is used to assess the ability of widely used I–T climatological models (IRI-2016, NRLMSISE-00, and HWM14), when used as drivers, to produce a realistic representation of the low-latitude electrodynamics. In order to evaluate the results, model E × B drifts are compared with observed climatology of the drifts derived from long-term observations made by the Jicamarca incoherent scatter radar. We found that the climatological I–T models are able to drive many of the features of the plasma drifts including the diurnal, seasonal, altitudinal and solar cycle variability. We also identified discrepancies between modeled and observed drifts under certain conditions. This is, in particular, the case of vertical equatorial plasma drifts during low solar flux conditions, which were attributed to a poor specification of the E -region neutral wind dynamo. DINAMO is then used to quantify the impact of meridional currents on the morphology of F -region zonal plasma drifts. Analytic representations of the equatorial drifts are commonly used to interpret observations. These representations, however, commonly ignore contributions from meridional currents. Using DINAMO we show that that these currents can modify zonal plasma drifts by up to ~ 16 m/s in the bottom-side post-sunset F -region, and up to ~ 10 m/s between 0700 and 1000 LT for altitudes above 500 km. Finally, DINAMO results show the relationship between the pre-reversal enhancement (PRE) of the vertical drifts and the vertical shear in the zonal plasma drifts with implications for equatorial spread F. 
    more » « less
  3. We introduce the implementation of a global climatological model of the equatorial ionospheric F-region zonal drifts (EZDrifts) that is made available to the public. The model uses the analytic description of the zonal plasma drifts presented by Haerendel et al. (1992) [ J Geophys Res 97(A2) : 1209–1223] and is driven by climatological models of the ionosphere and thermosphere under a realistic geomagnetic field configuration. EZDrifts is an expansion of the model of the zonal drifts first presented by Shidler & Rodrigues (2021) [ Prog Earth Planet Sci 8 : 26] which was only valid for the Jicamarca longitude sector and two specific solar flux conditions. EZDrifts now uses vertical equatorial plasma drifts from Scherliess & Fejer (1999) [ J Geophys Res 104(A4) : 6829–6842] model which allows it to provide zonal drifts for any day of the year, longitude, and solar flux condition. We show that the model can reproduce the main results of the Shidler & Rodrigues (2021) [ Prog Earth Planet Sci 8 : 26] model for the Peruvian sector. We also illustrate an application of EZDrifts by presenting and discussing longitudinal variabilities produced by the model. We show that the model predicts longitudinal variations in the reversal times of the drifts that are in good agreement with observations made by C/NOFS. EZDrifts also predicts longitudinal variations in the magnitude of the drifts that can be identified in the June solstice observations made by C/NOFS. We also point out data-model differences observed during Equinox and December solstice. Finally, we explain that the longitudinal variations in the zonal plasma drifts are caused by longitudinal variations in the latitude of the magnetic equator and, consequently, in the wind dynamo contributing to the resulting drifts. EZDrifts is distributed to the community through a public repository and can be used in applications requiring an estimate of the overall behavior of the equatorial zonal drifts. 
    more » « less
  4. Abstract

    We have devoted efforts to the development and performance evaluation of new low-cost ionospheric instruments for studies that require distributed observations and for educational and citizen science initiatives. Here, we report results of some of these efforts. More specifically, we describe the design of new ionospheric sensors based on Global Navigation Satellite System (GNSS) receivers and single-board computers. The first sensor (ScintPi 2.0) is a multi-constellation, single-frequency ionospheric scintillation monitor. The second sensor (ScintPi 3.0) is a multi-constellation, dual-frequency ionospheric scintillation and total electron content (TEC) monitor. Both sensors were created using Raspberry Pi computers and off-the-shelf GNSS receivers. While they are not intended to fully replace commercial ionospheric monitors, they cost a fraction of their price and can be used in various scientific applications. In addition to describing these new sensors, we present examples of observations made by ScintPi 3.0 deployed in Presidente Prudente, Brazil (22.12 S, 51.41 W, − 17.67° dip latitude). These examples show the ability of our system to detect scintillation events and TEC depletions such as those associated with equatorial plasma bubbles. Additionally, our observations were made in parallel with a commercial receiver (Septentrio PolaRx5S), which allowed an evaluation of the scintillation and TEC measurements provided by our system. The comparison shows that ScintPi 3.0 can provide estimates of the amplitude scintillation index (S4) and TEC that are in excellent agreement with those provided by PolaRx5S. We also show an example of the application of ScintPi 3.0 in distributed observations of ionospheric irregularities and scintillation over South America.

    Graphical Abstract

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract

    Most of the low‐latitude ionospheric radar observations in South America come from the Jicamarca Radio Observatory, located in the western longitude sector (∼75°W). The deployment of the 30 MHz FAPESP‐Clemson‐INPE (FCI) coherent backscatter radar in the magnetic equatorial site of São Luis, Brazil, in 2001 allowed observations to be made in the eastern sector (∼45°W). However, despite being operational for several years (2001–2012), FCI only made observations during daytime and pre‐midnight hours, with a few exceptions. Here, we describe an upgraded system that replaced the FCI radar and present results of full‐nightF‐region observations. This radar is referred to as Measurements of Equatorial and Low‐latitude Ionospheric irregularities over São Luís, South America (MELISSA), and made observations between March 2014 and December 2018. We present results of our analyses of pre‐ and post‐midnightF‐region echoes with focus on the spectral features of post‐midnight echoes and how they compare to spectra of echoes observed in the post‐sunset sector. The radar observations indicate that post‐midnightF‐region irregularities were generated locally and were not a result of “fossil” structures generated much earlier in time (in other longitude sectors) and that drifted into the radar field‐of‐view. This also includes cases where the echoes are weak and that would be associated with decaying equatorial spreadF(ESF) structures. Collocated digisonde observations show modest but noticeableF‐region apparent uplifts prior to post‐midnight ESF events. We associate the equatorial uplifts with disturbed dynamo effects and with destabilizingF‐region conditions leading to ESF development.

     
    more » « less