skip to main content


Search for: All records

Creators/Authors contains: "Roman-Lopes, Alexandre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Using a sample of red giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16, we infer the conditional distribution $p([\alpha /{\rm Fe}]\, |\, [{\rm Fe}/{\rm H}])$ in the Milky Way disk for the α-elements Mg, O, Si, S, and Ca. In each bin of [Fe/H] and Galactocentric radius R, we model p([α/Fe]) as a sum of two Gaussians, representing ‘low-α’ and ‘high-α’ populations with scale heights $z_1=0.45\, {\rm kpc}$ and $z_2=0.95\, {\rm kpc}$, respectively. By accounting for age-dependent and z-dependent selection effects in APOGEE, we infer the [α/Fe] distributions that would be found for a fair sample of long-lived stars covering all z. Near the Solar circle, this distribution is bimodal at sub-solar [Fe/H], with the low-α and high-α peaks clearly separated by a minimum at intermediate [α/Fe]. In agreement with previous results, we find that the high-α population is more prominent at smaller R, lower [Fe/H], and larger |z|, and that the sequence separation is smaller for Si and Ca than for Mg, O, and S. We find significant intrinsic scatter in [α/Fe] at fixed [Fe/H] for both the low-α and high-α populations, typically ∼0.04-dex. The means, dispersions, and relative amplitudes of this two-Gaussian description, and the dependence of these parameters on R, [Fe/H], and α-element, provide a quantitative target for chemical evolution models and a test for hydrodynamic simulations of disk galaxy formation. We argue that explaining the observed bimodality will probably require one or more sharp transitions in the disk’s gas accretion, star formation, or outflow history in addition to radial mixing of stellar populations. 
    more » « less
  2. Abstract The Sloan Digital Sky Survey (SDSS) has recently initiated its fifth survey generation (SDSS-V), with a central focus on stellar spectroscopy. In particular, SDSS-V's Milky Way Mapper program will deliver multiepoch optical and near-infrared spectra for more than 5 × 10 6 stars across the entire sky, covering a large range in stellar mass, surface temperature, evolutionary stage, and age. About 10% of those spectra will be of hot stars of OBAF spectral types, for whose analysis no established survey pipelines exist. Here we present the spectral analysis algorithm, ZETA-PAYNE, developed specifically to obtain stellar labels from SDSS-V spectra of stars with these spectral types and drawing on machine-learning tools. We provide details of the algorithm training, its test on artificial spectra, and its validation on two control samples of real stars. Analysis with ZETA-PAYNE leads to only modest internal uncertainties in the near-IR with APOGEE (optical with BOSS): 3%–10% (1%–2%) for T eff , 5%–30% (5%–25%) for v sin i , 1.7–6.3 km s −1 (0.7–2.2 km s −1 ) for radial velocity, <0.1 dex (<0.05 dex) for log g , and 0.4–0.5 dex (0.1 dex) for [M/H] of the star, respectively. We find a good agreement between atmospheric parameters of OBAF-type stars when inferred from their high- and low-resolution optical spectra. For most stellar labels, the APOGEE spectra are (far) less informative than the BOSS spectra of these stars, while log g , v sin i , and [M/H] are in most cases too uncertain for meaningful astrophysical interpretation. This makes BOSS low-resolution optical spectra better for stellar labels of OBAF-type stars, unless the latter are subject to high levels of extinction. 
    more » « less
  3. Abstract

    Very young (t≲ 10 Myr) stars possess strong magnetic fields that channel ionized gas from the interiors of their circumstellar disks to the surface of the star. Upon impacting the stellar surface, the shocked gas recombines and emits hydrogen spectral lines. To characterize the density and temperature of the gas within these accretion streams, we measure equivalent widths of Brackett (Br) 11–20 emission lines detected in 1101 APOGEE spectra of 326 likely pre-main-sequence accretors. For sources with multiple observations, we measure median epoch-to-epoch line strength variations of 10% in Br11 and 20% in Br20. We also fit the measured line ratios to predictions of radiative transfer models by Kwan & Fischer. We find characteristic best-fit electron densities ofne= 1011–1012cm−3, and excitation temperatures that are inversely correlated with electron density (fromT∼ 5000 K forne∼ 1012cm−3toT∼ 12,500 K atne∼ 1011cm−3). These physical parameters are in good agreement with predictions from modeling of accretion streams that account for the hydrodynamics and radiative transfer within the accretion stream. We also present a supplementary catalog of line measurements from 9733 spectra of 4255 Brackett emission-line sources in the APOGEE Data Release 17 data set.

     
    more » « less
  4. null (Ed.)
    Abstract We present a search for close, unresolved companions in a subset of spatially resolved Gaia wide binaries containing main-sequence stars within 200 pc of the Sun, utilizing the APOGEE–Gaia Wide Binary Catalog. A catalog of 37 wide binaries was created by selecting pairs of stars with nearly identical Gaia positions, parallaxes, and proper motions, and then confirming candidates to be gravitationally-bound pairs using APOGEE radial velocities. We identify close, unresolved stellar and substellar candidate companions in these multiple systems using (1) the Gaia binary main-sequence and (2) observed periodic radial velocity variations in APOGEE measurements due to the influence of a close substellar-mass companion. The studied wide binary pairs reveal a total of four stellar-mass close companions in four different wide binaries, and four substellar-mass close companion candidates in two wide binaries. The latter are therefore quadruple systems, with one substellar mass companion orbiting each wide binary component in an S-type orbit. Taken at face value, these candidate systems represent an enhancement of an order of magnitude over the expected occurrence rate of ∼2 per cent of stars having substellar companions >2 MJup within ∼100 day orbits; we discuss implications and possible explanations for this result. Finally, we compare chemical differences between the components of the wide binaries and the components of the candidate higher-order systems and find that any chemical influence or correlation due to the presence of close companions to wide binary stars is not discernible. 
    more » « less
  5. null (Ed.)
  6. ABSTRACT Recent evidence based on APOGEE data for stars within a few kpc of the Galactic Centre suggests that dissolved globular clusters (GCs) contribute significantly to the stellar mass budget of the inner halo. In this paper, we enquire into the origins of tracers of GC dissolution, N-rich stars, that are located in the inner 4 kpc of the Milky Way. From an analysis of the chemical compositions of these stars, we establish that about 30 per cent of the N-rich stars previously identified in the inner Galaxy may have an accreted origin. This result is confirmed by an analysis of the kinematic properties of our sample. The specific frequency of N-rich stars is quite large in the accreted population, exceeding that of its in situ counterparts by near an order of magnitude, in disagreement with predictions from numerical simulations. We hope that our numbers provide a useful test to models of GC formation and destruction. 
    more » « less
  7. null (Ed.)
  8. ABSTRACT Numerous studies of integrated starlight, stellar counts, and kinematics have confirmed that the Milky Way is a barred galaxy. However, far fewer studies have investigated the bar’s stellar population properties, which carry valuable independent information regarding the bar’s formation history. Here, we conduct a detailed analysis of chemical abundance distributions ([Fe/H] and [Mg/Fe]) in the on-bar and off-bar regions to study the azimuthal variation of star formation history (SFH) in the inner Galaxy. We find that the on-bar and off-bar stars at Galactocentric radii 3 kpc < rGC < 5 kpc have remarkably consistent [Fe/H] and [Mg/Fe] distribution functions and [Mg/Fe]–[Fe/H] relation, suggesting a common SFH shared by the long bar and the disc. In contrast, the bar and disc at smaller radii (2 kpc < rGC < 3 kpc) show noticeable differences, with relatively more very metal-rich ($\rm [Fe/H] \sim 0.4$) stars but fewer solar abundance stars in the bar. Given the three-phase star formation history proposed for the inner Galaxy in Lian et al., these differences could be explained by the off-bar disc having experienced either a faster early quenching process or recent metal-poor gas accretion. Vertical variations of the abundance distributions at small rGC suggest a wider vertical distribution of low-α stars in the bar, which may serve as chemical evidence for vertical heating through the bar buckling process. The lack of such vertical variations outside the bulge may then suggest a lack of vertical heating in the long bar. 
    more » « less
  9. null (Ed.)