skip to main content


Search for: All records

Creators/Authors contains: "Rose, Sanaea C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A supermassive black hole surrounded by a dense, nuclear star cluster resides at the center of many galaxies. In this dense environment, high-velocity collisions frequently occur between stars. About 10% of the stars within the Milky Way’s nuclear star cluster collide with other stars before evolving off the main sequence. Collisions preferentially affect tightly bound stars, which orbit most quickly and pass through regions of the highest stellar density. Over time, collisions therefore shape the bulk properties of the nuclear star cluster. We examine the effect of collisions on the cluster’s stellar density profile. We show that collisions produce a turning point in the density profile, which can be determined analytically. Varying the initial density profile and collision model, we characterize the evolution of the stellar density profile over 10 Gyr. We find that old, initially cuspy populations exhibit a break around 0.1 pc in their density profile, while shallow density profiles retain their initial shape outside of 0.01 pc. The initial density profile is always preserved outside of a few tenths of a parsec irrespective of initial conditions. We generalize this model to an arbitrary galactic nucleus and show that the location of the collisional break can be simply estimated from the nuclear properties. Lastly, we comment on the implications of collisions for the luminosity and color of stars in the collisionally shaped inner cluster.

     
    more » « less
  2. Abstract

    Like most galaxies, the Milky Way harbors a supermassive black hole (SMBH) at its center, surrounded by a nuclear star cluster. In this dense star cluster, direct collisions can occur between stars before they evolve off the main sequence. Using a statistical approach, we characterize the outcomes of these stellar collisions within the inner parsec of the Galactic center (GC). Close to the SMBH, where the velocity dispersion is larger than the escape speed from a Sun-like star, collisions lead to mass loss. We find that the stellar population within 0.01 pc is halved within about a billion years because of destructive collisions. Additionally, we predict a diffuse population of peculiar low-mass stars in the GC. These stars have been divested of their outer layers in the inner 0.01 pc before migrating to larger distances from the SMBH. Between 0.01 and 0.1 pc from the SMBH, collisions can result in mergers. Our results suggest that repeated collisions between lower-mass stars can produce massive (≳10M) stars, and that there may be ∼100 of them residing in this region. We provide predictions on the number of so-called G objects, dust- and gas-enshrouded stellar objects, that may result from main-sequence stellar collisions. Lastly, we comment on uncertainties in our model and possible connections between stellar collisions and the missing red giants in the GC.

     
    more » « less
  3. ABSTRACT

    The dynamical interaction of minor bodies (such as comets or asteroids) with planets plays an essential role in the planetary system’s architecture and evolution. As a result of these interactions, structures such as the Kuiper belt and the Oort cloud can be created. In particular, the collision of minor bodies with planets can drastically change the planet’s internal and orbital evolution. We present an analytical formulation to determine the collision time-scale for a minor body to impact a planet for arbitrary geometry. By comparing with a suite of detailed N-body simulations and an analytical method for collision time-scales in the Solar system, we confirmed the accuracy of our analytical formulation. As a proof of concept, we focused on the collision time-scales of minor bodies similar to the Jupiter-family comets and the long-period comets with a Jupiter-like planet. We show that our analytical method yields in good agreement with the numerical simulations. The formalism presented here thus provides a succinct and accurate alternative to numerical calculations.

     
    more » « less
  4. Abstract

    Most stellar evolution models predict that black holes (BHs) should not exist above approximately 50–70M, the lower limit of the pair-instability mass gap. However, recent LIGO/Virgo detections indicate the existence of BHs with masses at and above this threshold. We suggest that massive BHs, including intermediate-mass BHs (IMBHs), can form in galactic nuclei through collisions between stellar-mass BHs and the surrounding main-sequence stars. Considering dynamical processes such as collisions, mass segregation, and relaxation, we find that this channel can be quite efficient, forming IMBHs as massive as 104M. This upper limit assumes that (1) the BHs accrete a substantial fraction of the stellar mass captured during each collision and (2) that the rate at which new stars are introduced into the region near the SMBH is high enough to offset depletion by stellar disruptions and star–star collisions. We discuss deviations from these key assumptions in the text. Our results suggest that BHs in the pair-instability mass gap and IMBHs may be ubiquitous in galactic centers. This formation channel has implications for observations. Collisions between stars and BHs can produce electromagnetic signatures, for example, from X-ray binaries and tidal disruption events. Additionally, formed through this channel, both BHs in the mass gap and IMBHs can merge with the SMBHs at the center of a galactic nucleus through gravitational waves. These gravitational-wave events are extreme- and intermediate-mass ratio inspirals.

     
    more » « less
  5. null (Ed.)
  6. ABSTRACT At least $70\, {\rm per\, cent}$ of massive OBA-type stars reside in binary or higher order systems. The dynamical evolution of these systems can lend insight into the origins of extreme phenomena such as X-ray binaries and gravitational wave sources. In one such dynamical process, the Eccentric Kozai–Lidov (EKL) mechanism, a third companion star alters the secular evolution of a binary system. For dynamical stability, these triple systems must have a hierarchical configuration. We explore the effects of a distant third companion’s gravitational perturbations on a massive binary’s orbital configuration before significant stellar evolution has taken place (≤10 Myr). We include tidal dissipation and general relativistic precession. With large (38 000 total) Monte Carlo realizations of massive hierarchical triples, we characterize imprints of the birth conditions on the final orbital distributions. Specifically, we find that the final eccentricity distribution over the range of 0.1–0.7 is an excellent indicator of its birth distribution. Furthermore, we find that the period distributions have a similar mapping for wide orbits. Finally, we demonstrate that the observed period distribution for approximately 10-Myr-old massive stars is consistent with EKL evolution. 
    more » « less