skip to main content


Search for: All records

Creators/Authors contains: "Rosnet, Philippe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The accretion disks of active galactic nuclei (AGNs) are promising locations for the merger of compact objects detected by gravitational wave (GW) observatories. Embedded within a baryon-rich, high-density environment, mergers within AGNs are the only GW channel where an electromagnetic (EM) counterpart must occur (whether detectable or not). Considering AGNs with unusual flaring activity observed by the Zwicky Transient Facility (ZTF), we describe a search for candidate EM counterparts to binary black hole (BBH) mergers detected by LIGO/Virgo in O3. After removing probable false positives, we find nine candidate counterparts to BBH mergers during O3 (seven in O3a, two in O3b) with ap-value of 0.0019. Based on ZTF sky coverage, AGN geometry, and merger geometry, we expect ≈3(NBBH/83)(fAGN/0.5) potentially detectable EM counterparts from O3, whereNBBHis the total number of observed BBH mergers andfAGNis the fraction originating in AGNs. Further modeling of breakout and flaring phenomena in AGN disks is required to reduce our false-positive rate. Two of the events are also associated with mergers with total masses >100M, which is the expected rate for O3 if hierarchical (large-mass) mergers occur in the AGN channel. Candidate EM counterparts in future GW observing runs can be better constrained by coverage of the Southern sky as well as spectral monitoring of unusual AGN flaring events in LIGO/Virgo alert volumes. A future set of reliable AGN EM counterparts to BBH mergers will yield an independent means of measuring cosmic expansion (H0) as a function of redshift.

     
    more » « less
  2. Abstract We present observations of SN 2021csp, the second example of a newly identified type of supernova (SN) hallmarked by strong, narrow, P Cygni carbon features at early times (Type Icn). The SN appears as a fast and luminous blue transient at early times, reaching a peak absolute magnitude of −20 within 3 days due to strong interaction between fast SN ejecta ( v ≈ 30,000 km s −1 ) and a massive, dense, fast-moving C/O wind shed by the WC-like progenitor months before explosion. The narrow-line features disappear from the spectrum 10–20 days after explosion and are replaced by a blue continuum dominated by broad Fe features, reminiscent of Type Ibn and IIn supernovae and indicative of weaker interaction with more extended H/He-poor material. The transient then abruptly fades ∼60 days post-explosion when interaction ceases. Deep limits at later phases suggest minimal heavy-element nucleosynthesis, a low ejecta mass, or both, and imply an origin distinct from that of classical Type Ic SNe. We place SN 2021csp in context with other fast-evolving interacting transients, and discuss various progenitor scenarios: an ultrastripped progenitor star, a pulsational pair-instability eruption, or a jet-driven fallback SN from a Wolf–Rayet (W-R) star. The fallback scenario would naturally explain the similarity between these events and radio-loud fast transients, and suggests a picture in which most stars massive enough to undergo a W-R phase collapse directly to black holes at the end of their lives. 
    more » « less
  3. We present SNIascore, a deep-learning based method for spectroscopic classification of thermonuclear supernovae (SNe Ia) based on very low-resolution (R ∼100) data. The goal of SNIascore is fully automated classification of SNe Ia with a very low false-positive rate (FPR) so that human intervention can be greatly reduced in large-scale SN classification efforts, such as that undertaken by the public Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS). We utilize a recurrent neural network (RNN) architecture with a combination of bidirectional long short-term memory and gated recurrent unit layers. SNIascore achieves a <0.6% FPR while classifying up to 90% of the low-resolution SN Ia spectra obtained by the BTS. SNIascore simultaneously performs binary classification and predicts the redshifts of secure SNe Ia via regression (with a typical uncertainty of <0.005 in the range from z=0.01 to z=0.12). For the magnitude-limited ZTF BTS survey (≈70% SNe Ia), deploying SNIascore reduces the amount of spectra in need of human classification or confirmation by ≈60%. Furthermore, SNIascore allows SN Ia classifications to be automatically announced in real-time to the public immediately following a finished observation during the night. 
    more » « less
  4. Abstract The Fermi Gamma-ray Burst Monitor (GBM) triggers on-board in response to ∼40 short gamma-ray bursts (SGRBs) per year; however, their large localization regions have made the search for optical counterparts a challenging endeavour. We have developed and executed an extensive program with the wide field of view of the Zwicky Transient Facility (ZTF) camera, mounted on the Palomar 48 inch Oschin telescope (P48), to perform target-of-opportunity (ToO) observations on 10 Fermi-GBM SGRBs during 2018 and 2020–2021. Bridging the large sky areas with small field-of-view optical telescopes in order to track the evolution of potential candidates, we look for the elusive SGRB afterglows and kilonovae (KNe) associated with these high-energy events. No counterpart has yet been found, even though more than 10 ground-based telescopes, part of the Global Relay of Observatories Watching Transients Happen (GROWTH) network, have taken part in these efforts. The candidate selection procedure and the follow-up strategy have shown that ZTF is an efficient instrument for searching for poorly localized SGRBs, retrieving a reasonable number of candidates to follow up and showing promising capabilities as the community approaches the multi-messenger era. Based on the median limiting magnitude of ZTF, our searches would have been able to retrieve a GW170817-like event up to ∼200 Mpc and SGRB afterglows to z = 0.16 or 0.4, depending on the assumed underlying energy model. Future ToOs will expand the horizon to z = 0.2 and 0.7, respectively. 
    more » « less
  5. null (Ed.)
  6. Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the universe. The duration and hardness distribution of GRBs has two clusters, now understood to reflect (at least) two different progenitors. Short-hard GRBs (SGRBs; T90 <2 s) arise from compact binary mergers, while long-soft GRBs (LGRBs; T90 >2 s) have been attributed to the collapse of peculiar massive stars (collapsars). The discovery of SN 1998bw/GRB 980425 marked the first association of a LGRB with a collapsar and AT 2017gfo/GRB 170817A/GW170817 marked the first association of a SGRB with a binary neutron star merger, producing also gravitational wave (GW). Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi Satellite and the InterPlanetary Network (IPN) localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova (KN), but is consistent with being the supernova (SN). Despite the GRB duration being short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirms a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)