skip to main content


Search for: All records

Creators/Authors contains: "Ross, M. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern short-range gravity experiments that seek to test the Newtonian inverse-square law or weak equivalence principle of general relativity typically involve measuring the minute variations in the twist angle of a torsion pendulum. Motivated by various theoretical arguments, recent efforts largely focus on measurements with test mass separations in the sub-millimeter regime. To measure the twist, many experiments employ an optical autocollimator with a noise performance of ∼300 nrad[Formula: see text] in the 0.1–10 mHz band, enabling a measurement uncertainty of a few nanoradians in a typical integration time. We investigated an alternative method for measuring a small twist angle through the construction of a modified Michelson interferometer. The main modification is the introduction of two additional arms that allow for improved angular alignment. A series of detectors and LabView software routines were developed to determine the orientation of a mirror attached to a sinusoidally driven rotation stage that oscillated with an amplitude of 0.35 mrad and a period of 200 s. In these measurements, the resolution of the interferometer is 8.1  μrad per fringe, while its dynamic range spanned 0.962 mrad. We compare the performance of this interferometric optical system to existing autocollimator-based methods, discussing its implementation, possible advantages, and future potential, as well as disadvantages and limitations. 
    more » « less
  2. We describe a liquid-cryogen free cryostat with ultra-low vibration levels, which allows for continuous operation of a torsion balance at cryogenic temperatures. The apparatus uses a commercially available two-stage pulse-tube cooler and passive vibration isolation. The torsion balance exhibits torque noise levels lower than room temperature thermal noise by a factor of about four in the frequency range of 3–10 mHz, limited by residual seismic motion and by radiative heating of the pendulum body. In addition to lowering thermal noise below room-temperature limits, the low-temperature environment enables novel torsion balance experiments. Currently, the maximum duration of a continuous measurement run is limited by accumulation of cryogenic surface contamination on the optical elements inside the cryostat. 
    more » « less
  3. null (Ed.)
  4. Free, publicly-accessible full text available May 1, 2024
  5. Abstract

    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers.

     
    more » « less