skip to main content


Search for: All records

Creators/Authors contains: "Rossi, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Mountain topography alters the phase, amount, and spatial distribution of precipitation. Past efforts focused on how orographic precipitation can alter spatial patterns in mean runoff, with less emphasis on how time‐varying runoff statistics may also vary with topography. Given the importance of the magnitude and frequency of runoff events to fluvial erosion, we evaluated whether orographic patterns in mean runoff and daily runoff variability can be constrained using the global WaterGAP3 water model data. Model runoff data are validated against observational data in the contiguous United States, showing agreement with mean runoff in all settings and daily runoff variability in settings where rainfall‐runoff predominates. In snowmelt‐influenced settings, runoff variability is overestimated by the water model data. Cognizant of these limitations, we use the water model data to develop relationships between mean runoff and daily runoff variability and how these are mediated by snowmelt fraction in mountain topography globally. A global analysis of topographic controls on hydroclimatic variables using a random forest model was ambiguous. Instead, relationships between topography and runoff parameters are better assessed at the mountain range scale. Rulesets linking topography to mean runoff and snowmelt fraction are developed for three mid‐latitude mountain landscapes—British Columbia, European Alps, and Greater Caucasus. Increasing topographic elevation and relief together leads to higher mean runoff and lower runoff variability due to the increasing contribution of snowmelt. The three sets of empirical relationships developed here serve as the basis for a suite of numerical experiments in our companion manuscript (Part 2, Forte & Rossi, 2024a,https://doi.org.10.1002/2023JF007327).

     
    more » « less
  2. Abstract

    The extent to which climate and tectonics can be coupled rests on the degree to which topography and erosion rates scales linearly. The stream power incision model (SPIM) is commonly used to interpret such relationships, but is limited in probing mechanisms. A promising modification to stream power models are stochastic‐threshold incision models (STIM) which incorporate both variability in discharge and a threshold to erosion. In this family of models, the form of the topography erosion rate relationship is largely controlled by runoff variability. Applications of STIM typically assume temporally variable, but spatially uniform and synchronous runoff generating events, an assumption that is likely broken in regions with complicated orography. To address this limitation, we develop a new 1D STIM model, which we refer to as spatial‐STIM. This modified version of STIM allows for stochasticity in both time and space and is driven by empirical relationships between topography and runoff statistics. Coupling between mean runoff and runoff variability via topography in spatial‐STIM generates highly nonlinear relationships between steady‐state topography and erosion rates. We find that whether the daily statistics of runoff are spatially linked or unlinked, which sets whether there is spatial synchronicity in the recurrence interval of runoff generating events, is a fundamental control on landscape evolution. Many empirical topography—erosion rate data sets are based on data that span across the endmember scenarios of linked versus unlinked behavior. It is thus questionable whether singular SPIM relationships fit to those data can be meaningfully related to their associated hydroclimatic conditions.

     
    more » « less
  3. Free, publicly-accessible full text available January 1, 2025
  4. Abstract

    The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils produced in a target material from the WIMP elastic scattering. The experimental identification of the direction of the WIMP-induced nuclear recoils is a crucial asset in this field, as it enables unmistakable modulation signatures for dark matter. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity in argon dual-phase time projection chambers (TPC), that are widely considered for current and future direct dark matter searches. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud. Data were taken with nuclear recoils of known directions and kinetic energy of 72 keV, which is within the range of interest for WIMP-induced signals in argon. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratioRof the initial ionization cloud is$$R < 1.072$$R<1.072with 90 % confidence level.

     
    more » « less
  5. Free, publicly-accessible full text available October 1, 2024
  6. Abstract The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: $${}^{36}\hbox {Ar}$$ 36 Ar , $${}^{38}\textrm{Ar}$$ 38 Ar , and $${}^{40}\textrm{Ar}$$ 40 Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024